Math Problem Statement

SIN30+COS45

Solution

To evaluate sin30+cos45\sin 30^\circ + \cos 45^\circ, we can use the known values of these trigonometric functions:

  1. sin30=12\sin 30^\circ = \frac{1}{2}
  2. cos45=22\cos 45^\circ = \frac{\sqrt{2}}{2}

Now, adding them together:

sin30+cos45=12+22\sin 30^\circ + \cos 45^\circ = \frac{1}{2} + \frac{\sqrt{2}}{2}

Combining the terms, we get:

sin30+cos45=1+22\sin 30^\circ + \cos 45^\circ = \frac{1 + \sqrt{2}}{2}

Thus, the answer is:

1+22\frac{1 + \sqrt{2}}{2}

Would you like more details, or do you have any questions?

Here are some related questions:

  1. How would you compute sin45+cos30\sin 45^\circ + \cos 30^\circ?
  2. What is the value of sin45+cos45\sin 45^\circ + \cos 45^\circ?
  3. Can you find sin60+cos30\sin 60^\circ + \cos 30^\circ?
  4. How is the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 useful in similar problems?
  5. How would you simplify expressions like sin30cos45\sin 30^\circ \cdot \cos 45^\circ?

Tip: Memorizing common trigonometric values (like those for 30°, 45°, and 60°) can save you time in calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sine and Cosine Functions
Angle Measures

Formulas

\sin 30^\circ = \frac{1}{2}
\cos 45^\circ = \frac{\sqrt{2}}{2}

Theorems

Basic Trigonometric Identities

Suitable Grade Level

Grades 9-10