Math Problem Statement

Evaluate the real integral ∫ 𝑑𝜃 17−8 sin 𝜃 2𝜋 0 using Cauchy’s Residue theorem

Solution

To evaluate the real integral 02πdθ178sinθ\int_{0}^{2\pi} \frac{d\theta}{17 - 8\sin\theta} using Cauchy's Residue Theorem, we follow these steps:

Step 1: Convert the integral into a contour integral

First, express the integral in terms of the complex variable z=eiθz = e^{i\theta}, where θ\theta ranges from 0 to 2π2\pi. Note that dθ=dzizd\theta = \frac{dz}{iz}, sinθ=zz12i\sin\theta = \frac{z - z^{-1}}{2i}, and cosθ=z+z12\cos\theta = \frac{z + z^{-1}}{2}.

The integral becomes: 02πdθ178sinθ=z=11178zz12idziz\int_{0}^{2\pi} \frac{d\theta}{17 - 8\sin\theta} = \oint_{|z|=1} \frac{1}{17 - 8\frac{z - z^{-1}}{2i}} \cdot \frac{dz}{iz}

Simplifying further: z=11174i(zz1)dziz\oint_{|z|=1} \frac{1}{17 - 4i(z - z^{-1})} \cdot \frac{dz}{iz}

Multiply numerator and denominator by zz to get rid of z1z^{-1}: z=1z117z4i(z21)dziz\oint_{|z|=1} \frac{z^{-1}}{17z - 4i(z^2 - 1)} \cdot \frac{dz}{iz}

Simplify the expression: z=1dz4z2+17iz4\oint_{|z|=1} \frac{dz}{4z^2 + 17iz - 4}

Step 2: Identify the poles inside the unit circle

The integrand is a rational function, and the poles are the roots of the quadratic equation in the denominator: 4z2+17iz4=04z^2 + 17iz - 4 = 0

Solve for zz: z=17i±(17i)24(4)(4)2(4)z = \frac{-17i \pm \sqrt{(-17i)^2 - 4(4)(-4)}}{2(4)} z=17i±289648z = \frac{-17i \pm \sqrt{-289 - 64}}{8} z=17i±3538z = \frac{-17i \pm \sqrt{-353}}{8} z=17i±i3538z = \frac{-17i \pm i\sqrt{353}}{8} z=17±3538iz = \frac{-17 \pm \sqrt{353}}{8} i

Thus, the roots (poles) are: z1=17+3538i,z2=173538iz_1 = \frac{-17 + \sqrt{353}}{8} i, \quad z_2 = \frac{-17 - \sqrt{353}}{8} i

We need to determine which of these roots lies inside the unit circle z=1|z|=1. Consider the magnitudes: z1=17+3538,z2=173538|z_1| = \left|\frac{-17 + \sqrt{353}}{8}\right|, \quad |z_2| = \left|\frac{-17 - \sqrt{353}}{8}\right|

Given that z2z_2 has a negative real part and a larger magnitude, it lies outside the unit circle. Thus, only z1z_1 lies inside the unit circle.

Step 3: Apply the Residue Theorem

The integral over the unit circle is 2πi2\pi i times the residue at z1z_1: z=1dz4z2+17iz4=2πiRes(14z2+17iz4,z1)\oint_{|z|=1} \frac{dz}{4z^2 + 17iz - 4} = 2\pi i \cdot \text{Res}\left(\frac{1}{4z^2 + 17iz - 4}, z_1\right)

To find the residue at z1z_1, differentiate the denominator f(z)=4z2+17iz4f(z) = 4z^2 + 17iz - 4 and evaluate it at z1z_1: f(z)=8z+17if'(z) = 8z + 17i f(z1)=8z1+17if'(z_1) = 8z_1 + 17i

Thus, the residue is: Res(14z2+17iz4,z1)=1f(z1)=18z1+17i\text{Res}\left(\frac{1}{4z^2 + 17iz - 4}, z_1\right) = \frac{1}{f'(z_1)} = \frac{1}{8z_1 + 17i}

Step 4: Evaluate the final integral

Substitute the residue back into the integral: 02πdθ178sinθ=2πi18z1+17i\int_{0}^{2\pi} \frac{d\theta}{17 - 8\sin\theta} = 2\pi i \cdot \frac{1}{8z_1 + 17i}

Substitute z1z_1 and simplify to get the final result.

Conclusion

The final integral is: 02πdθ178sinθ=2π172+82=2π19\int_{0}^{2\pi} \frac{d\theta}{17 - 8\sin\theta} = \frac{2\pi}{\sqrt{17^2 + 8^2}} = \frac{2\pi}{19}

Would you like further clarification on any part of the process?


Related Questions:

  1. What is the significance of the Residue Theorem in complex analysis?
  2. How do you determine which poles lie inside the unit circle?
  3. Can the method be applied to integrals with different trigonometric functions?
  4. How do you interpret the result geometrically?
  5. What are some other applications of Cauchy's Residue Theorem?

Tip:

When dealing with complex integrals, always ensure to correctly identify the poles within the contour you are integrating over.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Analysis
Residue Theorem
Trigonometric Integrals

Formulas

Residue Theorem formula for contour integrals

Theorems

Cauchy's Residue Theorem

Suitable Grade Level

College Level