Math Problem Statement

Evaluate the line integral ∫ₐ 5xy² ds, where C is the right half of the circle x² + y² = 9.

Solution

The problem asks to evaluate the line integral:

C5xy2ds,\int_C 5xy^2 \, ds,

where CC is the right half of the circle x2+y2=9x^2 + y^2 = 9.


Steps to Solve:

  1. Parameterize the Curve CC: The curve is the right half of the circle x2+y2=9x^2 + y^2 = 9. A suitable parameterization for this half-circle is: x=3cos(t),y=3sin(t),t[π2,π2].x = 3\cos(t), \quad y = 3\sin(t), \quad t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

  2. Compute the Differential Arc Length dsds: The arc length differential is given by: ds=(dxdt)2+(dydt)2dt.ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt. From the parameterization: dxdt=3sin(t),dydt=3cos(t),\frac{dx}{dt} = -3\sin(t), \quad \frac{dy}{dt} = 3\cos(t), so: ds=(3sin(t))2+(3cos(t))2dt=9(sin2(t)+cos2(t))dt=3dt.ds = \sqrt{(-3\sin(t))^2 + (3\cos(t))^2} \, dt = \sqrt{9(\sin^2(t) + \cos^2(t))} \, dt = 3 \, dt.

  3. Substitute into the Integral: Substituting x=3cos(t)x = 3\cos(t), y=3sin(t)y = 3\sin(t), and ds=3dtds = 3 \, dt, the integrand becomes: 5xy2ds=5(3cos(t))(3sin(t))2(3dt).5xy^2 \, ds = 5(3\cos(t))(3\sin(t))^2(3 \, dt). Simplify: 5xy2ds=5(3cos(t))(9sin2(t))(3)dt=405cos(t)sin2(t)dt.5xy^2 \, ds = 5(3\cos(t))(9\sin^2(t))(3) \, dt = 405\cos(t)\sin^2(t) \, dt.

  4. Evaluate the Integral: The integral becomes: C5xy2ds=π/2π/2405cos(t)sin2(t)dt.\int_C 5xy^2 \, ds = \int_{-\pi/2}^{\pi/2} 405\cos(t)\sin^2(t) \, dt. Use the identity sin2(t)=1cos2(t)\sin^2(t) = 1 - \cos^2(t): π/2π/2405cos(t)sin2(t)dt=π/2π/2405cos(t)(1cos2(t))dt.\int_{-\pi/2}^{\pi/2} 405\cos(t)\sin^2(t) \, dt = \int_{-\pi/2}^{\pi/2} 405\cos(t)(1 - \cos^2(t)) \, dt. Distribute and split the integral: π/2π/2405cos(t)(1cos2(t))dt=π/2π/2405cos(t)dtπ/2π/2405cos(t)cos2(t)dt.\int_{-\pi/2}^{\pi/2} 405\cos(t)(1 - \cos^2(t)) \, dt = \int_{-\pi/2}^{\pi/2} 405\cos(t) \, dt - \int_{-\pi/2}^{\pi/2} 405\cos(t)\cos^2(t) \, dt.

    • The first term: π/2π/2405cos(t)dt=405[sin(t)]π/2π/2=405(sin(π/2)sin(π/2))=405(1(1))=810.\int_{-\pi/2}^{\pi/2} 405\cos(t) \, dt = 405 [\sin(t)]_{-\pi/2}^{\pi/2} = 405 (\sin(\pi/2) - \sin(-\pi/2)) = 405 (1 - (-1)) = 810.
    • The second term: π/2π/2405cos(t)cos2(t)dt=(odd function over symmetric interval, so it evaluates to 0).\int_{-\pi/2}^{\pi/2} 405\cos(t)\cos^2(t) \, dt = \text{(odd function over symmetric interval, so it evaluates to 0)}.

    Thus, the integral simplifies to: C5xy2ds=810.\int_C 5xy^2 \, ds = 810.


Final Answer:

810\boxed{810}

Would you like me to clarify any step or expand on specific concepts?


Related Questions:

  1. What is the significance of symmetry in simplifying integrals over specific intervals?
  2. How would the integral change if CC represented the full circle instead of the half-circle?
  3. Why does the term involving cos(t)cos2(t)\cos(t)\cos^2(t) vanish in this case?
  4. How can this problem be generalized to different radii or curves?
  5. Can Green's Theorem or another vector calculus theorem be used here?

Tip:

When parameterizing curves, always double-check the domain and ensure your parameter

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line integrals
Parameterization of curves
Trigonometric identities

Formulas

Arc length differential: ds = √((dx/dt)² + (dy/dt)²) dt
Trigonometric identity: sin²(t) + cos²(t) = 1

Theorems

-

Suitable Grade Level

College level (Calculus II or III)