Math Problem Statement

By using Green's theorem, evaluate the curve integral I = ∮_C (y^3 dx - 2x^3 dy), where C is the counterclockwise circle x^2 + y^2 = a^2.

Solution

Let's solve this step-by-step using Green's theorem.

Problem Restated:

We are asked to evaluate the line integral
I=C(y3dx2x3dy),I = \oint_C \left( y^3 \, dx - 2x^3 \, dy \right),
where CC is the counterclockwise-oriented circle x2+y2=a2x^2 + y^2 = a^2.


Step 1: Applying Green's Theorem

Green's theorem states: C(Mdx+Ndy)=R(NxMy)dA,\oint_C \left( M \, dx + N \, dy \right) = \iint_R \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA, where CC is a positively-oriented, simple closed curve, and RR is the region enclosed by CC. In our case:

  • M(x,y)=y3M(x, y) = y^3
  • N(x,y)=2x3N(x, y) = -2x^3

Step 2: Partial Derivatives

We now compute the required partial derivatives: Nx=(2x3)x=6x2,\frac{\partial N}{\partial x} = \frac{\partial (-2x^3)}{\partial x} = -6x^2, My=(y3)y=3y2.\frac{\partial M}{\partial y} = \frac{\partial (y^3)}{\partial y} = 3y^2.


Step 3: Evaluating the Double Integral

Green’s theorem converts the line integral into the following double integral over the disk x2+y2a2x^2 + y^2 \leq a^2: I=R(NxMy)dA=R(6x23y2)dA.I = \iint_R \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA = \iint_R \left( -6x^2 - 3y^2 \right) \, dA.

In polar coordinates:

  • x=rcosθx = r \cos \theta,
  • y=rsinθy = r \sin \theta,
  • dA=rdrdθdA = r \, dr \, d\theta,
  • The region RR is described by 0ra0 \leq r \leq a and 0θ<2π0 \leq \theta < 2\pi.

Thus, the integrand becomes: 6x23y2=6r2cos2θ3r2sin2θ.-6x^2 - 3y^2 = -6r^2 \cos^2 \theta - 3r^2 \sin^2 \theta. Factor out r2r^2: 6r2cos2θ3r2sin2θ=r2(6cos2θ+3sin2θ).-6r^2 \cos^2 \theta - 3r^2 \sin^2 \theta = -r^2 \left( 6\cos^2 \theta + 3\sin^2 \theta \right).

Using the given trigonometric identities:
cos2θ=1+cos(2θ)2,sin2θ=1cos(2θ)2,\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}, \quad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}, we get: 6cos2θ+3sin2θ=61+cos(2θ)2+31cos(2θ)2.6 \cos^2 \theta + 3 \sin^2 \theta = 6 \cdot \frac{1 + \cos(2\theta)}{2} + 3 \cdot \frac{1 - \cos(2\theta)}{2}.

Simplify:

\quad 3 \cdot \frac{1 - \cos(2\theta)}{2} = \frac{3 - 3\cos(2\theta)}{2}.$$

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Green's Theorem
Line Integral
Polar Coordinates
Vector Calculus

Formulas

Green's Theorem: ∮_C (M dx + N dy) = ∬_R (∂N/∂x - ∂M/∂y) dA
Polar Coordinates: x = r cos(θ), y = r sin(θ), dA = r dr dθ
Trigonometric Identities: cos²(θ) = (1 + cos(2θ))/2, sin²(θ) = (1 - cos(2θ))/2

Theorems

Green's Theorem

Suitable Grade Level

Undergraduate Calculus