Math Problem Statement

Evaluate the integral fo F • dr for F = (6xy)i + (6x2 - 6xy')j on the curve C consisting of the x-axis from x=0 to x=3, the arc of the circle

x? + y? = 9 up to the line y=x, and the line y=down to the origin.

Solution

To evaluate the line integral CFdr\int_C \mathbf{F} \cdot d\mathbf{r}, where:

F=(6xy)i+(6x26xy)j\mathbf{F} = (6xy) \mathbf{i} + (6x^2 - 6xy^{'}) \mathbf{j}

we proceed by parameterizing the three segments of the path CC:

1. Segment 1: Along the x-axis from (0,0)(0,0) to (3,0)(3,0)

  • Parametric form: r1(t)=(t,0),0t3\mathbf{r}_1(t) = (t, 0), \quad 0 \leq t \leq 3
  • dr1=(1,0)dtd\mathbf{r}_1 = (1, 0) dt

Substitute into the dot product:

F=(6t0)i+(6t26t0)j=(0)i+(6t2)j\mathbf{F} = (6t \cdot 0)\mathbf{i} + (6t^2 - 6t \cdot 0)\mathbf{j} = (0)\mathbf{i} + (6t^2)\mathbf{j}

Fdr1=6t20=0\mathbf{F} \cdot d\mathbf{r}_1 = 6t^2 \cdot 0 = 0


2. Segment 2: Arc of the circle x2+y2=9x^2 + y^2 = 9 from (3,0)(3,0) to (2,2)(\sqrt{2}, \sqrt{2})

  • Parametric form: r2(θ)=(3cos(θ),3sin(θ))\mathbf{r}_2(\theta) = (3\cos(\theta), 3\sin(\theta)), with θ\theta from 00 to π4\frac{\pi}{4}
  • dr2=(3sin(θ),3cos(θ))dθd\mathbf{r}_2 = (-3\sin(\theta), 3\cos(\theta)) d\theta

Substitute into the dot product:

F=(63cos(θ)3sin(θ))i+(6(3cos(θ))263cos(θ)3sin(θ))j\mathbf{F} = \left(6 \cdot 3\cos(\theta) \cdot 3\sin(\theta)\right)\mathbf{i} + \left(6 \cdot (3\cos(\theta))^2 - 6 \cdot 3\cos(\theta) \cdot 3\sin(\theta)\right)\mathbf{j}

Simplify the components:

F=(54cos(θ)sin(θ))i+(54cos2(θ)54cos(θ)sin(θ))j\mathbf{F} = \left(54\cos(\theta)\sin(\theta)\right)\mathbf{i} + \left(54\cos^2(\theta) - 54\cos(\theta)\sin(\theta)\right)\mathbf{j}

Dot product:

Fdr2=162cos(θ)sin2(θ)+162cos3(θ)\mathbf{F} \cdot d\mathbf{r}_2 = -162\cos(\theta)\sin^2(\theta) + 162\cos^3(\theta)

Integrate:

I2=0π4(162cos(θ)sin2(θ)+162cos3(θ))dθI_2 = \int_0^{\frac{\pi}{4}} (-162 \cos(\theta) \sin^2(\theta) + 162 \cos^3(\theta)) d\theta


3. Segment 3: Line from (2,2)(\sqrt{2}, \sqrt{2}) to (0,0)(0,0)

  • Parametric form: r3(t)=(2(1t),2(1t))\mathbf{r}_3(t) = (\sqrt{2}(1 - t), \sqrt{2}(1 - t)), with t[0,1]t \in [0,1]
  • dr3=(2,2)dtd\mathbf{r}_3 = (-\sqrt{2}, -\sqrt{2}) dt

Substitute into the dot product:

F=(62(1t)2(1t))i+(6(2(1t))262(1t)2(1t))j\mathbf{F} = \left(6 \cdot \sqrt{2}(1-t) \cdot \sqrt{2}(1-t)\right)\mathbf{i} + \left(6 (\sqrt{2}(1-t))^2 - 6 \cdot \sqrt{2}(1-t) \cdot \sqrt{2}(1-t)\right)\mathbf{j}

Simplify:

F=12(1t)2i+(12(1t)212(1t)2)j=12(1t)2i\mathbf{F} = 12(1-t)^2 \mathbf{i} + \left(12(1-t)^2 - 12(1-t)^2\right)\mathbf{j} = 12(1-t)^2 \mathbf{i}

Dot product:

Fdr3=12(1t)22\mathbf{F} \cdot d\mathbf{r}_3 = -12(1-t)^2 \sqrt{2}

Integrate:

I3=01122(1t)2dtI_3 = \int_0^1 -12 \sqrt{2} (1-t)^2 dt


Final Result:

CFdr=I1+I2+I3\int_C \mathbf{F} \cdot d\mathbf{r} = I_1 + I_2 + I_3

Let me calculate these integrals now. sympy import symbols, cos, sin, integrate, pi

Define variables

t, theta = symbols('t theta')

Integral for Segment 2

F_dot_dr2 = -162 * cos(theta) * sin(theta)**2 + 162 * cos(theta)**3 I2 = integrate(F_dot_dr2, (theta, 0, pi/4))

Integral for Segment 3

F_dot_dr3 = -12 * (1 - t)2 * 20.5 I3 = integrate(F_dot_dr3, (t, 0, 1))

I2, I3The evaluated integrals are:
I2=542andI35.66I_2 = 54\sqrt{2} \quad \text{and} \quad I_3 \approx -5.66

Since I1=0I_1 = 0, the total line integral is:

CFdr5425.6670.54\int_C \mathbf{F} \cdot d\mathbf{r} \approx 54\sqrt{2} - 5.66 \approx 70.54

Would you like a more detailed explanation of any specific step?


Related Questions:

  1. How do you parameterize different types of curves for line integrals?
  2. What are common methods to evaluate dot products in vector fields?
  3. How do you determine limits of integration for parametrized paths?
  4. What conditions allow using Green's Theorem instead of direct evaluation?
  5. How does the choice of path affect the evaluation of conservative vector fields?

Tip: Always check if a vector field is conservative before performing a line integral—it can simplify calculations using potential functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Parametrization of Curves
Dot Products
Vector Fields

Formulas

Line Integral: ∫C F • dr
Parametric form of a curve: r(t) = (x(t), y(t))
Dot product: F • dr = F_x dx + F_y dy

Theorems

Fundamental Theorem for Line Integrals
Green's Theorem (potential application)

Suitable Grade Level

Grades 11-12 (Advanced Calculus)