Math Problem Statement

Evaluate \( \lim_{{x \to \infty}} \left( x + e^x + e^{rx} \right)^{\frac{1}{x}} \) for different values of \( r \).

Solution

The expression you uploaded is:

limx(x+ex+erx)1x\lim_{{x \to \infty}} \left( x + e^x + e^{rx} \right)^{\frac{1}{x}}

where rr is a constant.

Solution:

To find this limit, let's analyze the behavior of each term inside the parentheses as xx \to \infty.

  1. Dominant Term Analysis:
    • xx grows linearly as xx \to \infty.
    • exe^x grows exponentially as xx \to \infty.
    • erxe^{rx} grows at the rate of erxe^{rx}, which depends on the value of rr. If r>1r > 1, erxe^{rx} grows faster than exe^x, making it the dominant term. If r<1r < 1, then exe^x is the dominant term.

Since exponential terms dominate over polynomial terms (like xx), the term xx becomes negligible compared to exe^x and erxe^{rx} as xx \to \infty.

  1. Case Analysis Based on rr:

    • If r>1r > 1: erxe^{rx} will dominate over exe^x, so x+ex+erxerxx + e^x + e^{rx} \approx e^{rx} as xx \to \infty.
    • If r=1r = 1: exe^x and erxe^{rx} grow at the same rate, so x+ex+erxex+ex=2exx + e^x + e^{rx} \approx e^x + e^x = 2e^x.
    • If r<1r < 1: exe^x will dominate over erxe^{rx}, so x+ex+erxexx + e^x + e^{rx} \approx e^x.
  2. Taking the Limit:

    • For r>1r > 1: limx(x+ex+erx)1xlimx(erx)1x=limxer=er\lim_{{x \to \infty}} \left( x + e^x + e^{rx} \right)^{\frac{1}{x}} \approx \lim_{{x \to \infty}} \left( e^{rx} \right)^{\frac{1}{x}} = \lim_{{x \to \infty}} e^{r} = e^r
    • For r=1r = 1: limx(x+ex+erx)1xlimx(2ex)1x=limxe=e\lim_{{x \to \infty}} \left( x + e^x + e^{rx} \right)^{\frac{1}{x}} \approx \lim_{{x \to \infty}} \left( 2e^x \right)^{\frac{1}{x}} = \lim_{{x \to \infty}} e = e
    • For r<1r < 1: limx(x+ex+erx)1xlimx(ex)1x=limxe=e\lim_{{x \to \infty}} \left( x + e^x + e^{rx} \right)^{\frac{1}{x}} \approx \lim_{{x \to \infty}} \left( e^x \right)^{\frac{1}{x}} = \lim_{{x \to \infty}} e = e

Conclusion:

\begin{cases} e^r & \text{if } r > 1 \\ e & \text{if } r \leq 1 \end{cases}$$ Would you like more details or have any questions? --- ### Related Questions 1. How do different values of $$r$$ affect the limit in exponential functions? 2. What role does the growth rate play in finding limits at infinity? 3. How do polynomial and exponential terms compare when taking limits? 4. Why does the term $$x$$ become negligible as $$x \to \infty$$ in this context? 5. Can we generalize this approach to other functions that involve mixed terms? ### Tip In limits involving exponential terms, the term with the highest exponential rate dominates as $$x \to \infty$$.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Exponential Growth
Dominance of Terms

Formulas

\( \lim_{{x \to \infty}} f(x) \)
Properties of exponential functions: \( e^x \)

Theorems

Exponential Growth Dominance
Limit Laws

Suitable Grade Level

Undergraduate Calculus