Math Problem Statement

\mathop {\lim }\limits_{h \to 0} \frac{{2\left( {\sqrt 3 \sin \left( {\frac{\pi }{6}, + ,h} \right), - ,\cos \left( {\frac{\pi }{6}, + ,h} \right)} \right)}}{{\sqrt 3 h(\sqrt 3 \cosh , - ,\sinh )}} is equal to

\frac{4}{3}

–\frac{4}{3}

\frac{2}{3}

\frac{3}{4}

Solution

We are asked to evaluate the following limit:

limh02(3sin(π6+h)cos(π6+h))3h(3coshsinh)\mathop {\lim }\limits_{h \to 0} \frac{{2\left( {\sqrt 3 \sin \left( {\frac{\pi }{6} + h} \right) - \cos \left( {\frac{\pi }{6} + h} \right)} \right)}}{{\sqrt 3 h(\sqrt 3 \cosh - \sinh )}}

Step 1: Expand the trigonometric functions

We can use trigonometric sum formulas to simplify the expressions for sin(π6+h)\sin\left(\frac{\pi}{6} + h\right) and cos(π6+h)\cos\left(\frac{\pi}{6} + h\right).

sin(π6+h)=sinπ6cosh+cosπ6sinh=12cosh+32sinh\sin\left(\frac{\pi}{6} + h\right) = \sin\frac{\pi}{6}\cos h + \cos\frac{\pi}{6}\sin h = \frac{1}{2}\cos h + \frac{\sqrt{3}}{2}\sin h

cos(π6+h)=cosπ6coshsinπ6sinh=32cosh12sinh\cos\left(\frac{\pi}{6} + h\right) = \cos\frac{\pi}{6}\cos h - \sin\frac{\pi}{6}\sin h = \frac{\sqrt{3}}{2}\cos h - \frac{1}{2}\sin h

Step 2: Substitute these into the numerator

Now substitute these expressions into the numerator:

3sin(π6+h)cos(π6+h)=3(12cosh+32sinh)(32cosh12sinh)\sqrt{3}\sin\left(\frac{\pi}{6} + h\right) - \cos\left(\frac{\pi}{6} + h\right) = \sqrt{3}\left(\frac{1}{2}\cos h + \frac{\sqrt{3}}{2}\sin h\right) - \left(\frac{\sqrt{3}}{2}\cos h - \frac{1}{2}\sin h\right)

Simplifying:

=32cosh+32sinh32cosh+12sinh= \frac{\sqrt{3}}{2}\cos h + \frac{3}{2}\sin h - \frac{\sqrt{3}}{2}\cos h + \frac{1}{2}\sin h

=42sinh=2sinh= \frac{4}{2}\sin h = 2\sin h

Step 3: Simplify the denominator

The denominator contains 3h(3coshsinh)\sqrt{3}h(\sqrt{3}\cosh - \sinh). As h0h \to 0, the hyperbolic approximations can be used:

coshh1+h22,sinhhh\cosh h \approx 1 + \frac{h^2}{2}, \quad \sinh h \approx h

Thus:

3h(3coshhsinhh)3h(3(1+h22)h)=3h(3h)\sqrt{3} h (\sqrt{3} \cosh h - \sinh h) \approx \sqrt{3} h (\sqrt{3}(1 + \frac{h^2}{2}) - h) = \sqrt{3} h (\sqrt{3} - h)

Step 4: Evaluate the limit

The expression becomes:

limh02sinh3h(3h)\lim_{h \to 0} \frac{2\sin h}{\sqrt{3}h(\sqrt{3} - h)}

As h0h \to 0, sinhh\sin h \approx h, so the limit simplifies to:

limh02h3h3=23\lim_{h \to 0} \frac{2h}{\sqrt{3}h\sqrt{3}} = \frac{2}{3}

Thus, the value of the limit is:

23\boxed{\frac{2}{3}}


Would you like further clarification or more details on any part of this? Here are 5 related questions you could explore:

  1. What is the significance of small angle approximations in limit calculations?
  2. How can hyperbolic functions be approximated for small values of hh?
  3. What are other techniques for evaluating trigonometric limits?
  4. How does the sum and difference formula for trigonometric functions work?
  5. Can this limit be solved using L'Hopital's Rule?

Tip: When evaluating limits with trigonometric functions, approximating them for small values (like h0h \to 0) can greatly simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometry
Hyperbolic Functions

Formulas

Trigonometric sum formulas: \sin(a + b) = \sin a \cos b + \cos a \sin b
Hyperbolic approximations: \cosh h \approx 1 + \frac{h^2}{2}, \sinh h \approx h
Small angle approximation: \sin h \approx h as h \to 0

Theorems

L'Hopital's Rule (optional)
Small Angle Approximation

Suitable Grade Level

Grades 11-12