Math Problem Statement

lim (x -> 1) (√(1-x³) - √(1-x)) / √(1-x²)

Solution

We need to evaluate the limit:

limx11x31x1x2\lim_{x \to 1} \frac{\sqrt{1 - x^3} - \sqrt{1 - x}}{\sqrt{1 - x^2}}

Step 1: Analyze direct substitution

If we substitute x=1x = 1 directly, all terms under the square root become 0, resulting in an indeterminate form 0/00/0. Therefore, we need to simplify the expression further.


Step 2: Rationalize the numerator

To simplify the numerator 1x31x\sqrt{1 - x^3} - \sqrt{1 - x}, multiply and divide by its conjugate:

1x31x=(1x31x)(1x3+1x)1x3+1x=(1x3)(1x)1x3+1x\sqrt{1 - x^3} - \sqrt{1 - x} = \frac{\left(\sqrt{1 - x^3} - \sqrt{1 - x}\right)\left(\sqrt{1 - x^3} + \sqrt{1 - x}\right)}{\sqrt{1 - x^3} + \sqrt{1 - x}} = \frac{(1 - x^3) - (1 - x)}{\sqrt{1 - x^3} + \sqrt{1 - x}}

This simplifies to:

(1x3)(1x)1x3+1x=xx31x3+1x\frac{(1 - x^3) - (1 - x)}{\sqrt{1 - x^3} + \sqrt{1 - x}} = \frac{x - x^3}{\sqrt{1 - x^3} + \sqrt{1 - x}}


Step 3: Rewrite the original expression

Now the original limit becomes:

limx1xx31x3+1x1x2\lim_{x \to 1} \frac{\frac{x - x^3}{\sqrt{1 - x^3} + \sqrt{1 - x}}}{\sqrt{1 - x^2}}

This simplifies to:

limx1xx31x3+1x11x2\lim_{x \to 1} \frac{x - x^3}{\sqrt{1 - x^3} + \sqrt{1 - x}} \cdot \frac{1}{\sqrt{1 - x^2}}

=limx1(xx3)1x3+1x11x2= \lim_{x \to 1} \frac{(x - x^3)}{\sqrt{1 - x^3} + \sqrt{1 - x}} \cdot \frac{1}{\sqrt{1 - x^2}}


Step 4: Factorize xx3x - x^3

Factor xx3x - x^3 as x(1x2)x(1 - x^2). Substituting this gives:

limx1x(1x2)(1x3+1x)1x2\lim_{x \to 1} \frac{x(1 - x^2)}{\left(\sqrt{1 - x^3} + \sqrt{1 - x}\right) \sqrt{1 - x^2}}

Cancel 1x21 - x^2 from the numerator and denominator (valid because x1x \to 1 and 1x201 - x^2 \neq 0):

limx1x1x3+1x\lim_{x \to 1} \frac{x}{\sqrt{1 - x^3} + \sqrt{1 - x}}


Step 5: Expand 1x31 - x^3 using a Taylor approximation

As x1x \to 1, approximate 1x31 - x^3 and 1x1 - x:

  • 1x33(1x)1 - x^3 \approx 3(1 - x) (since x3=13(1x)x^3 = 1 - 3(1 - x) to first order)
  • Substitute this into 1x3\sqrt{1 - x^3}: 1x33(1x)\sqrt{1 - x^3} \approx \sqrt{3(1 - x)}

Thus, 1x3+1x3(1x)+1x\sqrt{1 - x^3} + \sqrt{1 - x} \approx \sqrt{3(1 - x)} + \sqrt{1 - x}.


Step 6: Simplify further

Factor out 1x\sqrt{1 - x} from 3(1x)+1x\sqrt{3(1 - x)} + \sqrt{1 - x}:

3(1x)+1x=1x(3+1)\sqrt{3(1 - x)} + \sqrt{1 - x} = \sqrt{1 - x} \left(\sqrt{3} + 1\right)

Substitute back into the limit:

limx1x1x(3+1)\lim_{x \to 1} \frac{x}{\sqrt{1 - x} \cdot \left(\sqrt{3} + 1\right)}

Since x1x \to 1, replace xx with 1:

13+1\frac{1}{\sqrt{3} + 1}


Final Answer:

13+1\boxed{\frac{1}{\sqrt{3} + 1}}

If needed, this can be rationalized further:

13+13131=312\frac{1}{\sqrt{3} + 1} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{\sqrt{3} - 1}{2}

Alternate simplified form: 312\boxed{\frac{\sqrt{3} - 1}{2}}


Do you have questions or need further clarification?
Here are related questions to explore:

  1. How do you apply conjugates to simplify square root expressions in limits?
  2. What is the Taylor approximation for functions like 1x31 - x^3 around x=1x = 1?
  3. Why is rationalizing the numerator helpful in indeterminate limits?
  4. How can you check the validity of cancellations in limits?
  5. What are common indeterminate forms, and how do you resolve them?

Tip: Always analyze the dominant terms as xx approaches the limit point to simplify the computation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
Rationalization
Taylor Expansion

Formulas

Limit formula: lim (x -> c) f(x)/g(x) if indeterminate forms exist
Rationalization: (a - b)/(a + b) = [(a - b)(a + b)]/(a + b)
Taylor expansion: f(x) ≈ f(a) + f'(a)(x - a) for small (x - a)

Theorems

L'Hôpital's Rule for indeterminate forms
Taylor Series approximation for functions near a point
Properties of square roots and conjugates

Suitable Grade Level

Grades 11-12 / Early College