Math Problem Statement

$\boxed{\lim_{n \to \infty} \sum_{i=1}^n \frac{7\pi^2 i}{4n^2} \cos\left(\frac{7\pi i}{2n}\right)}$

Solution

We need to evaluate the following limit:

limni=1n7π2i4n2cos(7πi2n)\lim_{n \to \infty} \sum_{i=1}^n \frac{7\pi^2 i}{4n^2} \cos\left(\frac{7\pi i}{2n}\right)

This expression can be interpreted as a Riemann sum. To proceed, let's rewrite the sum in a form that makes it more evident:

  1. Identify the form of the Riemann sum:

    The sum can be written as:

    i=1nf(in)1n\sum_{i=1}^n f\left(\frac{i}{n}\right) \frac{1}{n}

    where:

    f(x)=7π2x4cos(7πx2)f(x) = \frac{7\pi^2 x}{4} \cos\left(\frac{7\pi x}{2}\right)

    and x=inx = \frac{i}{n}.

  2. Transition to the integral:

    As nn \to \infty, the sum becomes a definite integral over the interval [0,1][0, 1]:

    limni=1n7π2i4n2cos(7πi2n)=017π2x4cos(7πx2)dx\lim_{n \to \infty} \sum_{i=1}^n \frac{7\pi^2 i}{4n^2} \cos\left(\frac{7\pi i}{2n}\right) = \int_0^1 \frac{7\pi^2 x}{4} \cos\left(\frac{7\pi x}{2}\right) \, dx

  3. Evaluate the integral:

    The integral to evaluate is:

    017π2x4cos(7πx2)dx\int_0^1 \frac{7\pi^2 x}{4} \cos\left(\frac{7\pi x}{2}\right) \, dx

    We can solve this by using integration by parts. Let:

    u=x,dv=7π24cos(7πx2)dxu = x, \quad dv = \frac{7\pi^2}{4} \cos\left(\frac{7\pi x}{2}\right) dx

    Then:

    du=dx,v=7π2427πsin(7πx2)=7π14sin(7πx2)du = dx, \quad v = \frac{7\pi^2}{4} \cdot \frac{2}{7\pi} \sin\left(\frac{7\pi x}{2}\right) = \frac{7\pi}{14} \sin\left(\frac{7\pi x}{2}\right)

    Using integration by parts:

    udv=uvvdu\int u \, dv = uv - \int v \, du

    Substituting the expressions:

    017π2x4cos(7πx2)dx=[7π14xsin(7πx2)]01017π14sin(7πx2)dx\int_0^1 \frac{7\pi^2 x}{4} \cos\left(\frac{7\pi x}{2}\right) dx = \left[ \frac{7\pi}{14} x \sin\left(\frac{7\pi x}{2}\right) \right]_0^1 - \int_0^1 \frac{7\pi}{14} \sin\left(\frac{7\pi x}{2}\right) dx

    Evaluating the first part at the bounds:

    7π141sin(7π2)7π140=0\frac{7\pi}{14} \cdot 1 \cdot \sin\left(\frac{7\pi}{2}\right) - \frac{7\pi}{14} \cdot 0 = 0

    So the integral reduces to:

    7π1401sin(7πx2)dx- \frac{7\pi}{14} \int_0^1 \sin\left(\frac{7\pi x}{2}\right) dx

    Now, solve the remaining integral:

    sin(7πx2)dx=27πcos(7πx2)\int \sin\left(\frac{7\pi x}{2}\right) dx = -\frac{2}{7\pi} \cos\left(\frac{7\pi x}{2}\right)

    Evaluating at the bounds 00 and 11:

    [

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limit
Riemann Sum
Integral Calculus

Formulas

Riemann sum formula
Integration by parts formula

Theorems

-

Suitable Grade Level

Advanced Undergraduate