Math Problem Statement

Evaluate the limit: lim(x → 3) [(√(3x + 40) - 7) / ((5x - 7)^(1/3) - 2)]

Solution

We are tasked with evaluating the following limit:

limx33x+407(5x7)1/32.\lim_{x \to 3} \frac{\sqrt{3x + 40} - 7}{(5x - 7)^{1/3} - 2}.

Step 1: Direct Substitution

Let's substitute x=3x = 3 into the numerator and denominator:

  • Numerator: 3(3)+407=497=77=0\sqrt{3(3) + 40} - 7 = \sqrt{49} - 7 = 7 - 7 = 0,
  • Denominator: (5(3)7)1/32=(157)1/32=81/32=22=0(5(3) - 7)^{1/3} - 2 = (15 - 7)^{1/3} - 2 = 8^{1/3} - 2 = 2 - 2 = 0.

Since both the numerator and denominator evaluate to 00, this is an indeterminate form. We need to simplify the expression.


Step 2: Rationalization

Numerator:

To handle 3x+407\sqrt{3x + 40} - 7, multiply and divide by the conjugate 3x+40+7\sqrt{3x + 40} + 7: 3x+407=(3x+407)(3x+40+7)3x+40+7.\sqrt{3x + 40} - 7 = \frac{(\sqrt{3x + 40} - 7)(\sqrt{3x + 40} + 7)}{\sqrt{3x + 40} + 7}. The numerator becomes: (3x+40)272=(3x+40)49=3x9.(\sqrt{3x + 40})^2 - 7^2 = (3x + 40) - 49 = 3x - 9. Thus, the numerator simplifies to: 3x93x+40+7.\frac{3x - 9}{\sqrt{3x + 40} + 7}.


Denominator:

Rewrite the denominator (5x7)1/32(5x - 7)^{1/3} - 2. Multiply and divide by the conjugate (5x7)2/3+2(5x7)1/3+4(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4: (5x7)1/32=((5x7)1/32)((5x7)2/3+2(5x7)1/3+4)(5x7)2/3+2(5x7)1/3+4.(5x - 7)^{1/3} - 2 = \frac{\left((5x - 7)^{1/3} - 2\right)\left((5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4\right)}{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}. The numerator becomes: ((5x7)1/3)323=(5x7)8=5x15.\left((5x - 7)^{1/3}\right)^3 - 2^3 = (5x - 7) - 8 = 5x - 15. Thus, the denominator simplifies to: 5x15(5x7)2/3+2(5x7)1/3+4.\frac{5x - 15}{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}.


Step 3: Simplify the Overall Expression

The expression becomes: 3x93x+40+75x15(5x7)2/3+2(5x7)1/3+4.\frac{\frac{3x - 9}{\sqrt{3x + 40} + 7}}{\frac{5x - 15}{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}}. Simplify by multiplying by the reciprocal: 3x93x+40+7(5x7)2/3+2(5x7)1/3+45x15.\frac{3x - 9}{\sqrt{3x + 40} + 7} \cdot \frac{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}{5x - 15}. Factor 3(x3)3(x - 3) from 3x93x - 9 and 5(x3)5(x - 3) from 5x155x - 15: 3(x3)3x+40+7(5x7)2/3+2(5x7)1/3+45(x3).\frac{3(x - 3)}{\sqrt{3x + 40} + 7} \cdot \frac{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}{5(x - 3)}. Cancel x3x - 3: 35(5x7)2/3+2(5x7)1/3+43x+40+7.\frac{3}{5} \cdot \frac{(5x - 7)^{2/3} + 2(5x - 7)^{1/3} + 4}{\sqrt{3x + 40} + 7}.


Step 4: Evaluate the Limit

Substitute x=3x = 3 into the simplified expression:

  • Numerator: (5(3)7)2/3+2(5(3)7)1/3+4=(157)2/3+2(157)1/3+4=82/3+2(81/3)+4=4+4+4=12(5(3) - 7)^{2/3} + 2(5(3) - 7)^{1/3} + 4 = (15 - 7)^{2/3} + 2(15 - 7)^{1/3} + 4 = 8^{2/3} + 2(8^{1/3}) + 4 = 4 + 4 + 4 = 12,
  • Denominator: 3(3)+40+7=49+7=7+7=14\sqrt{3(3) + 40} + 7 = \sqrt{49} + 7 = 7 + 7 = 14.

Thus, the limit becomes: 351214=3567=1835.\frac{3}{5} \cdot \frac{12}{14} = \frac{3}{5} \cdot \frac{6}{7} = \frac{18}{35}.


Final Answer:

limx33x+407(5x7)1/32=1835.\lim_{x \to 3} \frac{\sqrt{3x + 40} - 7}{(5x - 7)^{1/3} - 2} = \frac{18}{35}.

Would you like a more detailed explanation or clarification?


Follow-up Questions:

  1. How is the conjugate method useful in simplifying indeterminate forms?
  2. What alternative methods could be used to evaluate limits involving cube roots?
  3. Could L'Hôpital's Rule be applied here? Why or why not?
  4. What are common indeterminate forms encountered in limits?
  5. How does factoring help simplify polynomial expressions in limits?

Tip:

When handling indeterminate forms, rationalizing or factoring are powerful tools to simplify expressions and remove problematic terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
Algebraic Simplification
Rationalization

Formulas

Difference of squares: (a - b)(a + b) = a^2 - b^2
Cube difference: a^3 - b^3 = (a - b)(a^2 + ab + b^2)

Theorems

Limit Theorems
L'Hôpital's Rule (mentioned but not used in this problem)

Suitable Grade Level

College Calculus or Advanced High School Mathematics