Math Problem Statement

selesaikan operasi pada gambar

selesaikan operasi pada gambar

Solution

The problem involves evaluating the limit:

limx(9x2+5x+59x27x4).\lim_{x \to \infty} \left( \sqrt{9x^2 + 5x + 5} - \sqrt{9x^2 - 7x - 4} \right).

Solution:

  1. Factor out x2x^2 from each square root: For large xx, we can simplify the square roots by factoring x2x^2 out from each term under the root:

    9x2+5x+5=x2(9+5x+5x2)=x9+5x+5x2,\sqrt{9x^2 + 5x + 5} = \sqrt{x^2 \left( 9 + \frac{5}{x} + \frac{5}{x^2} \right)} = x \sqrt{9 + \frac{5}{x} + \frac{5}{x^2}}, 9x27x4=x2(97x4x2)=x97x4x2.\sqrt{9x^2 - 7x - 4} = \sqrt{x^2 \left( 9 - \frac{7}{x} - \frac{4}{x^2} \right)} = x \sqrt{9 - \frac{7}{x} - \frac{4}{x^2}}.

    Thus, the expression becomes: limx(x9+5x+5x2x97x4x2).\lim_{x \to \infty} \left( x \sqrt{9 + \frac{5}{x} + \frac{5}{x^2}} - x \sqrt{9 - \frac{7}{x} - \frac{4}{x^2}} \right).

  2. Factor xx out: Factor xx from the entire expression: x(9+5x+5x297x4x2).x \left( \sqrt{9 + \frac{5}{x} + \frac{5}{x^2}} - \sqrt{9 - \frac{7}{x} - \frac{4}{x^2}} \right).

  3. Use the binomial approximation: For large xx, the term inside each square root can be expanded using the binomial approximation: 9+ax+bx23+16ax,for small terms involving 1x.\sqrt{9 + \frac{a}{x} + \frac{b}{x^2}} \approx 3 + \frac{1}{6} \cdot \frac{a}{x}, \quad \text{for small terms involving } \frac{1}{x}. Apply this to both terms: 9+5x+5x23+165x,\sqrt{9 + \frac{5}{x} + \frac{5}{x^2}} \approx 3 + \frac{1}{6} \cdot \frac{5}{x}, 97x4x23167x.\sqrt{9 - \frac{7}{x} - \frac{4}{x^2}} \approx 3 - \frac{1}{6} \cdot \frac{7}{x}.

    Substitute these approximations back into the expression: x(9+5x+5x297x4x2)x((3+56x)(376x)).x \left( \sqrt{9 + \frac{5}{x} + \frac{5}{x^2}} - \sqrt{9 - \frac{7}{x} - \frac{4}{x^2}} \right) \approx x \left( \left( 3 + \frac{5}{6x} \right) - \left( 3 - \frac{7}{6x} \right) \right).

  4. Simplify the result: Simplify the difference inside the parentheses: (3+56x)(376x)=56x+76x=126x=2x.\left( 3 + \frac{5}{6x} \right) - \left( 3 - \frac{7}{6x} \right) = \frac{5}{6x} + \frac{7}{6x} = \frac{12}{6x} = \frac{2}{x}.

    The overall expression becomes: x2x=2.x \cdot \frac{2}{x} = 2.

Final Answer:

2\boxed{2}

Let me know if you'd like further clarification! 😊


Related Questions:

  1. How does the binomial expansion simplify square roots?
  2. What happens if xx \to -\infty in this problem?
  3. How do you compute limits involving other square root differences?
  4. What are other techniques for handling limits with radicals?
  5. Can we use L'Hôpital's Rule here? Why or why not?

Tip:

Always try factoring out the dominant term (e.g., x2x^2) to simplify limits involving radicals for large xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Radical Expressions
Binomial Approximation

Formulas

Binomial Approximation: \( \sqrt{a + b} \approx \sqrt{a} + \frac{b}{2\sqrt{a}} \) for small \( b \)
Difference of Square Roots Simplification
Limit Properties

Theorems

Limit Theorem for Large Values

Suitable Grade Level

Grades 11-12 (Pre-Calculus/Calculus)