Math Problem Statement

3(d) evaluate lim x->1+, (ln x)tan((pi x)/2)

Solution

To evaluate

limx1+(ln(x)tan(πx2)),\lim_{x \to 1^+} \left( \ln(x) \tan\left(\frac{\pi x}{2}\right)\right),

let us proceed step by step:

Step 1: Behavior of ln(x)\ln(x) as x1+x \to 1^+

The natural logarithm ln(x)\ln(x) approaches 00 as x1+x \to 1^+. Hence, ln(x)0\ln(x) \to 0.

Step 2: Behavior of tan(πx2)\tan\left(\frac{\pi x}{2}\right) as x1+x \to 1^+

As x1+x \to 1^+, πx2π2\frac{\pi x}{2} \to \frac{\pi}{2}. The tangent function tan(θ)\tan(\theta) approaches ++\infty as θπ2\theta \to \frac{\pi}{2}^-.

Step 3: Combination of the terms

The limit involves the product of two terms: ln(x)0andtan(πx2)+.\ln(x) \to 0 \quad \text{and} \quad \tan\left(\frac{\pi x}{2}\right) \to +\infty. This creates an indeterminate form of the type 00 \cdot \infty.

Step 4: Rewrite the expression

Rewrite the product as: ln(x)tan(πx2)=ln(x)cot(πx2),\ln(x) \tan\left(\frac{\pi x}{2}\right) = \frac{\ln(x)}{\cot\left(\frac{\pi x}{2}\right)}, where cot(y)=1/tan(y)\cot(y) = 1 / \tan(y).

Now, as x1+x \to 1^+:

  • ln(x)0\ln(x) \to 0,
  • cot(πx2)0+\cot\left(\frac{\pi x}{2}\right) \to 0^+.

Thus, the limit takes the indeterminate form 00\frac{0}{0}.

Step 5: Apply L'Hôpital's Rule

Using L'Hôpital's Rule, we differentiate the numerator and the denominator with respect to xx: limx1+ln(x)cot(πx2)=limx1+ddxln(x)ddxcot(πx2).\lim_{x \to 1^+} \frac{\ln(x)}{\cot\left(\frac{\pi x}{2}\right)} = \lim_{x \to 1^+} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} \cot\left(\frac{\pi x}{2}\right)}.

Differentiate the numerator:

ddxln(x)=1x.\frac{d}{dx} \ln(x) = \frac{1}{x}.

Differentiate the denominator:

ddxcot(πx2)=csc2(πx2)π2.\frac{d}{dx} \cot\left(\frac{\pi x}{2}\right) = -\csc^2\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}.

Substitute these derivatives into the limit: limx1+ln(x)cot(πx2)=limx1+1xcsc2(πx2)π2.\lim_{x \to 1^+} \frac{\ln(x)}{\cot\left(\frac{\pi x}{2}\right)} = \lim_{x \to 1^+} \frac{\frac{1}{x}}{-\csc^2\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}}.

Simplify:

=limx1+2xπcsc2(πx2).= \lim_{x \to 1^+} \frac{-2}{x \pi \csc^2\left(\frac{\pi x}{2}\right)}.

As x1+x \to 1^+, csc2(πx2)csc2(π2)=1\csc^2\left(\frac{\pi x}{2}\right) \to \csc^2\left(\frac{\pi}{2}\right) = 1, and x1x \to 1. Thus, the limit becomes: limx1+2π=2π.\lim_{x \to 1^+} \frac{-2}{\pi} = -\frac{2}{\pi}.

Final Answer:

limx1+(ln(x)tan(πx2))=2π.\lim_{x \to 1^+} \left( \ln(x) \tan\left(\frac{\pi x}{2}\right) \right) = -\frac{2}{\pi}.

Would you like to see the process for another example or related explanation?


Related Questions:

  1. What is the significance of L'Hôpital's Rule in solving limits?
  2. How do trigonometric limits help in analyzing asymptotic behavior?
  3. Can you explain limits of logarithmic functions in other contexts?
  4. Why does ln(x)\ln(x) go to zero as x1+x \to 1^+?
  5. What are other methods to analyze indeterminate forms like 00 \cdot \infty?

Tip: When working with limits involving logarithmic and trigonometric functions, rewriting the product as a quotient often simplifies the evaluation process!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Logarithmic Functions
Trigonometric Functions
Indeterminate Forms
L'Hôpital's Rule

Formulas

lim x->a (f(x)/g(x)) = lim x->a (f'(x)/g'(x)) (L'Hôpital's Rule)
Derivative of ln(x): d/dx[ln(x)] = 1/x
Derivative of cot(x): d/dx[cot(x)] = -csc^2(x)

Theorems

L'Hôpital's Rule
Properties of Logarithmic and Trigonometric Limits

Suitable Grade Level

Undergraduate - Calculus Level