Math Problem Statement

حاصل این حد رو بدست بیار فقط یادت باشه اون توان دو هست که بالا میبینی ، ضریب وجود نداره

حاصل این حد رو بدست بیار فقط یادت باشه اون توان دو هست که بالا میبینی ، ضریب وجود نداره

Solution

The problem is to compute the following limit involving an integral:

limx0xt2et2dtx.\lim_{x \to \infty} \frac{\int_{0}^{x} t^2 e^{-t^2} \, dt}{x}.

Steps to Solve:

  1. Simplify the integral expression: Let F(x)=0xt2et2dtF(x) = \int_{0}^{x} t^2 e^{-t^2} \, dt. The given limit becomes: limxF(x)x.\lim_{x \to \infty} \frac{F(x)}{x}.

  2. Analyze F(x)F(x) as xx \to \infty: The function t2et2t^2 e^{-t^2} tends to 0 as tt \to \infty due to the exponential term dominating. However, the integral F(x)F(x) converges to a finite value since 0t2et2dt\int_{0}^{\infty} t^2 e^{-t^2} \, dt is a known integral.

  3. Compute the definite integral 0t2et2dt\int_{0}^{\infty} t^2 e^{-t^2} \, dt: Using substitution u=t2u = t^2 (so du=2tdtdu = 2t \, dt), we rewrite: 0t2et2dt=120ueudu.\int_{0}^{\infty} t^2 e^{-t^2} \, dt = \frac{1}{2} \int_{0}^{\infty} u e^{-u} \, du. The integral 0ueudu\int_{0}^{\infty} u e^{-u} \, du is a standard Gamma function result: 0ueudu=Γ(2)=1!.\int_{0}^{\infty} u e^{-u} \, du = \Gamma(2) = 1!. Thus: 0t2et2dt=12.\int_{0}^{\infty} t^2 e^{-t^2} \, dt = \frac{1}{2}.

  4. Limit as xx \to \infty: As xx \to \infty, F(x)12F(x) \to \frac{1}{2}, and hence: limxF(x)x=limx12x=0.\lim_{x \to \infty} \frac{F(x)}{x} = \lim_{x \to \infty} \frac{\frac{1}{2}}{x} = 0.

Final Answer:

0\boxed{0}

Would you like a deeper explanation for any step? Here are related questions:

  1. What is the Gamma function, and how does it relate to this problem?
  2. Why does 0t2et2dt\int_{0}^{\infty} t^2 e^{-t^2} \, dt converge to 12\frac{1}{2}?
  3. What happens if the denominator xx is replaced by xnx^n (general power)?
  4. How does substitution u=t2u = t^2 simplify this integral?
  5. Can L'Hôpital's rule be applied to this problem, and what would it yield?

Tip: When evaluating integrals of the form 0xnexmdx\int_{0}^{\infty} x^n e^{-x^m} \, dx, substitutions can transform them into Gamma function forms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Definite Integrals
Gamma Function
Asymptotic Analysis

Formulas

lim_{x \to \infty} \frac{F(x)}{x}
\int_{0}^{\infty} t^2 e^{-t^2} dt = \frac{1}{2}

Theorems

Exponential decay dominates polynomial growth
Gamma function properties
Limit properties

Suitable Grade Level

Undergraduate - Calculus II or III