Math Problem Statement

solve this

For any real number x, find \( \lim_{h \to 0} \frac{\cos(3(x+2h)) - \cos(3x)}{h} \).

Solution

The question provided in the image is:

limh0cos(3(x+2h))cos(3x)h.\lim_{h \to 0} \frac{\cos(3(x+2h)) - \cos(3x)}{h}.

Step-by-step solution:

This limit can be solved using trigonometric identities and derivatives.

1. Use the trigonometric identity for the difference of cosines:

cos(A)cos(B)=2sin(A+B2)sin(AB2).\cos(A) - \cos(B) = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right).

Here:

  • A=3(x+2h)A = 3(x + 2h),
  • B=3xB = 3x.

Substitute these into the identity: cos(3(x+2h))cos(3x)=2sin(3(x+2h)+3x2)sin(3(x+2h)3x2).\cos(3(x+2h)) - \cos(3x) = -2 \sin\left(\frac{3(x+2h) + 3x}{2}\right) \sin\left(\frac{3(x+2h) - 3x}{2}\right).

2. Simplify each term:

  • 3(x+2h)+3x2=3x+6h+3x2=3x+3h\frac{3(x+2h) + 3x}{2} = \frac{3x + 6h + 3x}{2} = 3x + 3h,
  • 3(x+2h)3x2=3x+6h3x2=3h\frac{3(x+2h) - 3x}{2} = \frac{3x + 6h - 3x}{2} = 3h.

So: cos(3(x+2h))cos(3x)=2sin(3x+3h)sin(3h).\cos(3(x+2h)) - \cos(3x) = -2 \sin(3x + 3h) \sin(3h).

3. Substitute into the limit:

limh0cos(3(x+2h))cos(3x)h=limh02sin(3x+3h)sin(3h)h.\lim_{h \to 0} \frac{\cos(3(x+2h)) - \cos(3x)}{h} = \lim_{h \to 0} \frac{-2 \sin(3x + 3h) \sin(3h)}{h}.

4. Separate the terms:

Rewrite as: limh02sin(3x+3h)sin(3h)h=2limh0[sin(3x+3h)sin(3h)h].\lim_{h \to 0} \frac{-2 \sin(3x + 3h) \sin(3h)}{h} = -2 \lim_{h \to 0} \left[\sin(3x + 3h) \cdot \frac{\sin(3h)}{h}\right].

5. Evaluate each part:

  • As h0h \to 0, sin(3x+3h)sin(3x)\sin(3x + 3h) \to \sin(3x) because 3h03h \to 0.
  • sin(3h)h3\frac{\sin(3h)}{h} \to 3, because limu0sin(u)u=1\lim_{u \to 0} \frac{\sin(u)}{u} = 1.

Substitute these limits: 2limh0[sin(3x+3h)sin(3h)h]=2sin(3x)3.-2 \lim_{h \to 0} \left[\sin(3x + 3h) \cdot \frac{\sin(3h)}{h}\right] = -2 \sin(3x) \cdot 3.

6. Final answer:

2sin(3x)3=6sin(3x).-2 \sin(3x) \cdot 3 = -6 \sin(3x).

Final Answer:

6sin(3x)\boxed{-6 \sin(3x)}

Let me know if you would like further clarification or assistance!


Related Questions to Explore:

  1. How does the limit definition relate to the derivative of a function?
  2. What is the trigonometric identity for cos(A)cos(B)\cos(A) - \cos(B), and how is it derived?
  3. How do you evaluate limits involving sine or cosine functions?
  4. What is the significance of the derivative of cos(kx)\cos(kx)?
  5. How can this type of problem be solved using Taylor series approximations?

Tip: Always check for trigonometric identities when simplifying expressions involving trigonometric functions in limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Identities
Differentiation

Formulas

cos(A) - cos(B) = -2sin((A+B)/2)sin((A-B)/2)
lim(u -> 0) sin(u)/u = 1

Theorems

Definition of the Derivative

Suitable Grade Level

Grades 11-12