Math Problem Statement

\displaystyle\lim_{x\to 0}\dfrac{7x-\sin(x)}{x^2+\sin(3x)}

Solution

To evaluate the limit

limx07xsin(x)x2+sin(3x),\lim_{x \to 0} \frac{7x - \sin(x)}{x^2 + \sin(3x)},

we start by analyzing the behavior of the numerator and the denominator as x0x \to 0.

Step 1: Evaluate the numerator and denominator at x=0x = 0

  • Numerator: 7xsin(x)7x - \sin(x)

    As x0x \to 0, both 7x7x and sin(x)\sin(x) approach 0. Thus, the numerator 7xsin(x)07x - \sin(x) \to 0.

  • Denominator: x2+sin(3x)x^2 + \sin(3x)

    As x0x \to 0, x20x^2 \to 0 and sin(3x)0\sin(3x) \to 0. Therefore, the denominator x2+sin(3x)0x^2 + \sin(3x) \to 0.

Since both the numerator and the denominator approach 0, this is an indeterminate form of type 00\frac{0}{0}. We can apply L'Hôpital's rule to evaluate the limit.

Step 2: Apply L'Hôpital's Rule

L'Hôpital's rule states that if limxaf(x)g(x)=00\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} or ±±\frac{\pm\infty}{\pm\infty}, then:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

if this latter limit exists.

Compute the derivatives of the numerator and the denominator:

  • Derivative of the numerator f(x)=7xsin(x)f(x) = 7x - \sin(x):

f(x)=7cos(x)f'(x) = 7 - \cos(x)

  • Derivative of the denominator g(x)=x2+sin(3x)g(x) = x^2 + \sin(3x):

g(x)=2x+3cos(3x)g'(x) = 2x + 3\cos(3x)

Now apply L'Hôpital's rule:

limx07xsin(x)x2+sin(3x)=limx07cos(x)2x+3cos(3x)\lim_{x \to 0} \frac{7x - \sin(x)}{x^2 + \sin(3x)} = \lim_{x \to 0} \frac{7 - \cos(x)}{2x + 3\cos(3x)}

Step 3: Evaluate the limit after applying L'Hôpital's rule

As x0x \to 0:

  • cos(x)1\cos(x) \to 1, so 7cos(x)71=67 - \cos(x) \to 7 - 1 = 6
  • 2x02x \to 0 and cos(3x)1\cos(3x) \to 1, so 2x+3cos(3x)0+3×1=32x + 3\cos(3x) \to 0 + 3 \times 1 = 3

Substitute these into the limit:

limx07cos(x)2x+3cos(3x)=63=2\lim_{x \to 0} \frac{7 - \cos(x)}{2x + 3\cos(3x)} = \frac{6}{3} = 2

Final Answer

2\boxed{2}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
L'Hôpital's Rule
Trigonometric Functions

Formulas

-

Theorems

L'Hôpital's Rule

Suitable Grade Level

Advanced High School