Math Problem Statement

Evaluate the iterated integrals by converting to polar coordinates: (1) \( \int_0^2 \int_0^{\sqrt{4-x^2}} e^{-(x^2+y^2)} \,dy \,dx \) and (2) \( \int_0^{\frac{1}{2}} \int_{\frac{\sqrt{1-y^2}}{\sqrt{3}y}}^{\sqrt{1-y^2}} xy^2 \,dx \,dy \).

Solution

The problem requires evaluating the given iterated integrals by converting them to polar coordinates. Let’s analyze both integrals step by step.


1. Problem (1):

0204x2e(x2+y2)dydx\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} e^{-(x^2 + y^2)} \, dy \, dx

Step 1: Conversion to polar coordinates

In polar coordinates:

  • x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta
  • x2+y2=r2x^2 + y^2 = r^2
  • The Jacobian of the transformation is dxdy=rdrdθdx\,dy = r \, dr\,d\theta.

The limits:

  • The region corresponds to x2+y24x^2 + y^2 \leq 4 in the first quadrant (0x2,0y4x20 \leq x \leq 2, 0 \leq y \leq \sqrt{4 - x^2}).
  • In polar coordinates, this region becomes 0r20 \leq r \leq 2 and 0θπ20 \leq \theta \leq \frac{\pi}{2}.

The integral becomes: 0π202er2rdrdθ\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} e^{-r^2} \, r \, dr \, d\theta

Step 2: Solving the integral

Separate the integral: 0π2dθ02rer2dr\int_{0}^{\frac{\pi}{2}} d\theta \cdot \int_{0}^{2} r e^{-r^2} \, dr

  • The θ\theta-integral is: 0π2dθ=π2\int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{2}

  • For the rr-integral, use substitution u=r2u = r^2, (du = 2r ,

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Polar Coordinates
Integration

Formulas

x = r*cos(θ), y = r*sin(θ), dx*dy = r*dr*dθ
Area in polar coordinates: \( \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} f(r, θ) r \,dr\,dθ \)

Theorems

Jacobian Transformation
Exponential Integration

Suitable Grade Level

Undergraduate (Calculus II or Multivariable Calculus)