Math Problem Statement

Evaluate the following integrals: 1) ∫ (x^4 + 5x^2 - 1) / (x^2 - 9) dx, 2) ∫ (5x - 11) / [(x - 2)^2(x + 1)^3] dx, 3) ∫ (x^2 + 7) / (x^4 + 7x^2 + 12) dx, 4) ∫ (2x + 1) / (x^2 + x + 1)^3 dx.

Solution

Let's solve the integrals provided in Exercise 2.5 from the image:

1. x4+5x21x29dx\int \frac{x^4 + 5x^2 - 1}{x^2 - 9} \, dx

Step 1: Polynomial Long Division

  • We divide x4+5x21x^4 + 5x^2 - 1 by x29x^2 - 9 using polynomial long division.

Step 2: Simplify and solve the integral

After division, the resulting expression is integrated term by term.


2. 5x11(x2)2(x+1)3dx\int \frac{5x - 11}{(x - 2)^2 (x + 1)^3} \, dx

Step 1: Partial Fraction Decomposition

  • Express 5x11(x2)2(x+1)3\frac{5x - 11}{(x - 2)^2 (x + 1)^3} in terms of partial fractions.

Step 2: Integrate each fraction

Once decomposed, integrate each term individually.


3. x2+7x4+7x2+12dx\int \frac{x^2 + 7}{x^4 + 7x^2 + 12} \, dx

Step 1: Substitute u=x2u = x^2

  • Let u=x2u = x^2, which transforms the integral into a rational function in terms of uu.

Step 2: Solve the resulting integral

This transformed integral can be handled using partial fractions or another suitable method.


4. ( \int \frac{2x + 1}{(x^2 + x + 1)^3} ,

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Polynomial Long Division
Partial Fraction Decomposition
Substitution Method

Formulas

∫ f(x) dx
Partial fraction decomposition formula
Polynomial long division method

Theorems

Fundamental Theorem of Calculus
Partial Fraction Decomposition

Suitable Grade Level

Undergraduate Mathematics