Math Problem Statement

Evaluate the integral using the indicated trigonometric substitution: ∫(8x^3/√(x^2+9)) dx, where x = 3tan(θ).

Solution

To evaluate the integral using the indicated trigonometric substitution, we'll proceed as follows:

Step 1: Identify the Substitution

Given x=3tan(θ)x = 3 \tan(\theta), we need to calculate dxdx and substitute into the integral.

  • Substitute x=3tan(θ)x = 3 \tan(\theta): dx=3sec2(θ)dθdx = 3 \sec^2(\theta) \, d\theta

  • Simplify the expression under the square root: x2+9=(3tan(θ))2+9=9tan2(θ)+9=9(tan2(θ)+1)=9sec2(θ)x^2 + 9 = (3 \tan(\theta))^2 + 9 = 9 \tan^2(\theta) + 9 = 9 (\tan^2(\theta) + 1) = 9 \sec^2(\theta) So, x2+9=3sec(θ)\sqrt{x^2 + 9} = 3 \sec(\theta).

Step 2: Substitute into the Integral

The original integral is: 8x3x2+9dx\int \frac{8x^3}{\sqrt{x^2 + 9}} \, dx Substitute x=3tan(θ)x = 3 \tan(\theta) and dx=3sec2(θ)dθdx = 3 \sec^2(\theta) \, d\theta: 8(3tan(θ))33sec(θ)3sec2(θ)dθ\int \frac{8(3 \tan(\theta))^3}{3 \sec(\theta)} \cdot 3 \sec^2(\theta) \, d\theta Simplifying: 827tan3(θ)3sec(θ)dθ=72tan3(θ)sec(θ)dθ\int \frac{8 \cdot 27 \tan^3(\theta)}{3} \cdot \sec(\theta) \, d\theta = 72 \int \tan^3(\theta) \sec(\theta) \, d\theta

Step 3: Simplify the Integral

Recall that tan3(θ)=tan(θ)tan2(θ)\tan^3(\theta) = \tan(\theta) \cdot \tan^2(\theta) and tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1: 72tan(θ)(sec2(θ)1)sec(θ)dθ72 \int \tan(\theta)(\sec^2(\theta) - 1) \sec(\theta) \, d\theta Expanding: 72(tan(θ)sec3(θ)tan(θ)sec(θ))dθ72 \int (\tan(\theta) \sec^3(\theta) - \tan(\theta) \sec(\theta)) \, d\theta This can be split into two integrals: 72(tan(θ)sec3(θ)dθtan(θ)sec(θ)dθ)72 \left( \int \tan(\theta) \sec^3(\theta) \, d\theta - \int \tan(\theta) \sec(\theta) \, d\theta \right)

Step 4: Evaluate the Integrals

  1. Integral of tan(θ)sec(θ)\tan(\theta) \sec(\theta): tan(θ)sec(θ)dθ=sec2(θ)2+C\int \tan(\theta) \sec(\theta) \, d\theta = \frac{\sec^2(\theta)}{2} + C

  2. Integral of tan(θ)sec3(θ)\tan(\theta) \sec^3(\theta): This requires a more advanced method of integration, typically using reduction formulas or rewriting in terms of sine and cosine. After evaluating, we find:

tan(θ)sec3(θ)dθ=...\int \tan(\theta) \sec^3(\theta) \, d\theta = ... Continue the solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Integration by Substitution
Algebraic Simplification
Trigonometric Identities

Formulas

x = 3tan(θ)
dx = 3sec^2(θ) dθ
√(x^2 + 9) = 3sec(θ)
tan^2(θ) = sec^2(θ) - 1

Theorems

Fundamental Theorem of Calculus
Trigonometric Identity for tan^2 and sec^2

Suitable Grade Level

Grades 11-12 (Advanced Calculus)