Math Problem Statement

The integral ∫√(4−x^2)/x dx

can be reduced to the form

k∫sin^m(θ)cos^n(θ)dθ,

with the substitution x(θ)=_______,

so that, in terms of θ,

√(4−x^2)=________ ≥0,

k=, m=, and n=_____

.

The substitution u(θ)= ________

reduces the integral to ∫R(u)du,

where the rational function

R(u)= _________ .

The partial fraction expansion of

R(u) is _________ .

The integral ∫R(u)du= _________ ,

from which we see that

∫√(4−x^2)/x dx = __________ .

FILL IN ALL BLANKS

Solution

We will go through the necessary trigonometric substitution and reduction steps systematically.

Step 1: Trigonometric Substitution

We recognize that the integral
I=4x2xdxI = \int \frac{\sqrt{4 - x^2}}{x} \,dx suggests a trigonometric substitution based on the form 4x24 - x^2. The standard substitution is:

x=2sinθx = 2\sin\theta

Step 2: Expressing Square Root and dx in Terms of θ\theta

Since x=2sinθx = 2\sin\theta, we compute:

4x2=44sin2θ=4(1sin2θ)=4cos2θ=2cosθ\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2\theta} = \sqrt{4(1 - \sin^2\theta)} = \sqrt{4\cos^2\theta} = 2\cos\theta

The derivative is:

dx=2cosθdθdx = 2\cos\theta d\theta

Step 3: Substituting in the Integral

Rewriting the given integral:

I=2cosθ2sinθ2cosθdθI = \int \frac{2\cos\theta}{2\sin\theta} \cdot 2\cos\theta d\theta

=2cos2θsinθdθ= \int \frac{2\cos^2\theta}{\sin\theta} d\theta

This is now of the form:

ksinmθcosnθdθk \int \sin^m\theta \cos^n\theta d\theta

where we compare terms and find:

  • k=2k = 2
  • m=1m = -1 (since sinθ\sin\theta is in the denominator)
  • n=2n = 2

Step 4: Another Substitution

We introduce:

u=sinθu = \sin\theta

Then,

du=cosθdθdu = \cos\theta d\theta

Rewriting:

I=2cos2θsinθdθI = 2 \int \frac{\cos^2\theta}{\sin\theta} d\theta

Using cos2θ=1sin2θ=1u2\cos^2\theta = 1 - \sin^2\theta = 1 - u^2, we get:

I=21u2uduI = 2 \int \frac{1 - u^2}{u} du

Step 5: Expressing as a Rational Function

R(u)=1u2u=1uuR(u) = \frac{1 - u^2}{u} = \frac{1}{u} - u

Step 6: Partial Fraction Expansion

1uu\frac{1}{u} - u does not require further expansion.

Step 7: Integrating

R(u)du=1uduudu\int R(u) du = \int \frac{1}{u} du - \int u du

=lnuu22= \ln |u| - \frac{u^2}{2}

Since u=sinθu = \sin\theta, we substitute back:

I=2(lnsinθsin2θ2)I = 2 \left(\ln |\sin\theta| - \frac{\sin^2\theta}{2} \right)

Step 8: Final Expression in Terms of xx

Since sinθ=x2\sin\theta = \frac{x}{2}, we substitute:

lnsinθ=lnx2\ln |\sin\theta| = \ln \left|\frac{x}{2}\right|

sin2θ=(x2)2=x24\sin^2\theta = \left(\frac{x}{2}\right)^2 = \frac{x^2}{4}

Thus, the final result is:

4x2xdx=2lnx2x24+C\int \frac{\sqrt{4 - x^2}}{x} dx = 2 \ln \left|\frac{x}{2}\right| - \frac{x^2}{4} + C


Final Answers to Blanks:

  1. x(θ)=2sinθx(\theta) = 2\sin\theta
  2. 4x2=2cosθ\sqrt{4 - x^2} = 2\cos\theta
  3. k=2k = 2
  4. m=1m = -1
  5. n=2n = 2
  6. u(θ)=sinθu(\theta) = \sin\theta
  7. R(u)=1u2uR(u) = \frac{1 - u^2}{u}
  8. Partial fraction expansion: 1uu\frac{1}{u} - u
  9. R(u)du=lnuu22\int R(u) du = \ln |u| - \frac{u^2}{2}
  10. 4x2xdx=2lnx2x24+C\int \frac{\sqrt{4 - x^2}}{x} dx = 2 \ln \left|\frac{x}{2}\right| - \frac{x^2}{4} + C

Would you like any step to be explained in more detail?


Related Questions:

  1. How do we choose the correct trigonometric substitution?
  2. What are other common substitutions for integrals involving square roots?
  3. How do we solve similar integrals involving a2x2\sqrt{a^2 - x^2}?
  4. How do we apply partial fractions in more complex cases?
  5. What is the geometric interpretation of this integral?

Tip:
Trigonometric substitutions are useful for integrals containing a2x2\sqrt{a^2 - x^2}, x2a2\sqrt{x^2 - a^2}, and x2+a2\sqrt{x^2 + a^2}. Identifying the right substitution makes integration much easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Integration
Partial Fraction Decomposition
Definite and Indefinite Integrals

Formulas

Trigonometric substitution: x = a sin(θ), dx = a cos(θ) dθ
Identity: sin²(θ) + cos²(θ) = 1
Partial fraction decomposition for rational functions

Theorems

Trigonometric identities
Fundamental theorem of calculus
Techniques of integration including substitution and partial fractions

Suitable Grade Level

Undergraduate Calculus (Calculus II)