Math Problem Statement

Solve all the problems one by one plz

Solution

Sure, let's start with the first integral and proceed step by step.

Problem 1:

Evaluate the integral sin4xcos3xdx\int \sin^4 x \cos^3 x \, dx.

To solve this, we use the trigonometric identity and substitution method.

First, rewrite the integral: sin4xcos3xdx\int \sin^4 x \cos^3 x \, dx

Express sin4x\sin^4 x as (sin2x)2(\sin^2 x)^2: sin2x=1cos2x\sin^2 x = 1 - \cos^2 x Thus, sin4x=(1cos2x)2\sin^4 x = (1 - \cos^2 x)^2

Now, substitute u=sinxu = \sin x, which gives du=cosxdxdu = \cos x \, dx: sin4xcos3xdx=(1cos2x)2cos3xdx\int \sin^4 x \cos^3 x \, dx = \int (1 - \cos^2 x)^2 \cos^3 x \, dx

=(1u2)2u3du= \int (1 - u^2)^2 u^3 \, du

Expand the integrand: =(12u2+u4)u3du= \int (1 - 2u^2 + u^4) u^3 \, du =(u32u5+u7)du= \int (u^3 - 2u^5 + u^7) \, du

Now integrate term by term: =u3du2u5du+u7du= \int u^3 \, du - 2 \int u^5 \, du + \int u^7 \, du

=u442u66+u88+C= \frac{u^4}{4} - 2 \cdot \frac{u^6}{6} + \frac{u^8}{8} + C

=u44u63+u88+C= \frac{u^4}{4} - \frac{u^6}{3} + \frac{u^8}{8} + C

Substitute back u=sinxu = \sin x: =sin4x4sin6x3+sin8x8+C= \frac{\sin^4 x}{4} - \frac{\sin^6 x}{3} + \frac{\sin^8 x}{8} + C

So, the integral sin4xcos3xdx\int \sin^4 x \cos^3 x \, dx evaluates to: sin4x4sin6x3+sin8x8+C\frac{\sin^4 x}{4} - \frac{\sin^6 x}{3} + \frac{\sin^8 x}{8} + C

Would you like to proceed to the next problem or do you have any questions about this solution?

Here are the next 5 problems for you to choose from:

  1. sin5xdx\int \sin^5 x \, dx
  2. cos5xdx\int \cos^5 x \, dx
  3. xcos3x2sinx2dx\int x \cos^3 x^2 \sin x^2 \, dx
  4. sin7xdx\int \sin^7 x \, dx
  5. cos7xdx\int \cos^7 x \, dx

Tip: Always look for symmetry and substitution opportunities in trigonometric integrals to simplify your calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric identities
Integration techniques

Formulas

Trigonometric identities for powers of sine and cosine

Theorems

-

Suitable Grade Level

Undergraduate level