Math Problem Statement

Evaluate the integral from 3 to 7 of cosh(ln(5t))/t dt.

Solution

The integral given is:

37cosh(ln(5t))tdt\int_{3}^{7} \frac{\cosh(\ln(5t))}{t} \, dt

Step-by-Step Solution:

  1. Simplification of the Integrand:

We know that cosh(x)\cosh(x) can be expressed as:

cosh(x)=ex+ex2\cosh(x) = \frac{e^x + e^{-x}}{2}

Let's set x=ln(5t)x = \ln(5t). So,

cosh(ln(5t))=eln(5t)+eln(5t)2\cosh(\ln(5t)) = \frac{e^{\ln(5t)} + e^{-\ln(5t)}}{2}

Using the properties of logarithms and exponents, we have:

eln(5t)=5tandeln(5t)=15te^{\ln(5t)} = 5t \quad \text{and} \quad e^{-\ln(5t)} = \frac{1}{5t}

Thus,

cosh(ln(5t))=5t+15t2=25t2+110t\cosh(\ln(5t)) = \frac{5t + \frac{1}{5t}}{2} = \frac{25t^2 + 1}{10t}

  1. Substitute into the Integral:

Now, substitute this expression back into the original integral:

3725t2+110ttdt=1103725t2+1t2dt\int_{3}^{7} \frac{\frac{25t^2 + 1}{10t}}{t} \, dt = \frac{1}{10} \int_{3}^{7} \frac{25t^2 + 1}{t^2} \, dt

This simplifies to:

11037(25+1t2)dt\frac{1}{10} \int_{3}^{7} \left( 25 + \frac{1}{t^2} \right) dt

  1. Evaluate the Integral:

The integral can now be broken up as:

110(3725dt+371t2dt)\frac{1}{10} \left( \int_{3}^{7} 25 \, dt + \int_{3}^{7} \frac{1}{t^2} \, dt \right)

  • The first integral is straightforward:

3725dt=25[t]37=25(73)=25×4=100\int_{3}^{7} 25 \, dt = 25[t]_{3}^{7} = 25(7 - 3) = 25 \times 4 = 100

  • The second integral is:

371t2dt=[1t]37=17+13=3721=421\int_{3}^{7} \frac{1}{t^2} \, dt = \left[ -\frac{1}{t} \right]_{3}^{7} = -\frac{1}{7} + \frac{1}{3} = \frac{3 - 7}{21} = -\frac{4}{21}

  1. Final Calculation:

Now, substitute these values back into the expression:

110(100421)=110(100421)=110×2100421=110×209621=2096210\frac{1}{10} \left( 100 - \frac{4}{21} \right) = \frac{1}{10} \left( 100 - \frac{4}{21} \right) = \frac{1}{10} \times \frac{2100 - 4}{21} = \frac{1}{10} \times \frac{2096}{21} = \frac{2096}{210}

Simplifying this fraction:

2096210=9.98(approximately)\frac{2096}{210} = 9.98 \quad (\text{approximately})

Thus, the value of the integral is approximately 9.989.98.


Do you need more details or have any questions?

Here are 5 related questions:

  1. How do we simplify cosh(ln(x))\cosh(\ln(x)) in general cases?
  2. What are the properties of the hyperbolic cosine function (cosh\cosh)?
  3. Can we generalize the method for evaluating integrals with other hyperbolic functions?
  4. How does the substitution technique help in integral evaluation?
  5. How would the limits change the outcome if different values were used?

Tip: Always look for algebraic simplifications (like exponent properties) when dealing with logarithmic and hyperbolic functions in integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Hyperbolic Functions
Logarithms
Exponential Functions

Formulas

cosh(x) = (e^x + e^(-x)) / 2
ln(5t)
Integral of 1/t^2 is -1/t

Theorems

Properties of Logarithms
Basic Properties of Hyperbolic Functions

Suitable Grade Level

Undergraduate level (or advanced high school calculus)