Math Problem Statement

For 

f(x) = x2 + 6x + 9,

 evaluate 

f(x + 4) − f(x).

 Simplify.

Solution

Given the function f(x)=x2+6x+9f(x) = x^2 + 6x + 9, we need to evaluate f(x+4)f(x)f(x + 4) - f(x) and simplify the expression.

Step 1: Find f(x+4)f(x + 4)

Substitute x+4x + 4 into the function f(x)=x2+6x+9f(x) = x^2 + 6x + 9: f(x+4)=(x+4)2+6(x+4)+9f(x + 4) = (x + 4)^2 + 6(x + 4) + 9

Step 2: Expand (x+4)2(x + 4)^2 and 6(x+4)6(x + 4)

(x+4)2=x2+8x+16(x + 4)^2 = x^2 + 8x + 16 6(x+4)=6x+246(x + 4) = 6x + 24

Step 3: Combine all terms for f(x+4)f(x + 4)

f(x+4)=x2+8x+16+6x+24+9f(x + 4) = x^2 + 8x + 16 + 6x + 24 + 9 f(x+4)=x2+14x+49f(x + 4) = x^2 + 14x + 49

Step 4: Find f(x+4)f(x)f(x + 4) - f(x)

Now subtract f(x)f(x) from f(x+4)f(x + 4): f(x+4)f(x)=(x2+14x+49)(x2+6x+9)f(x + 4) - f(x) = (x^2 + 14x + 49) - (x^2 + 6x + 9)

Step 5: Simplify the expression

f(x+4)f(x)=x2+14x+49x26x9f(x + 4) - f(x) = x^2 + 14x + 49 - x^2 - 6x - 9 f(x+4)f(x)=(x2x2)+(14x6x)+(499)f(x + 4) - f(x) = (x^2 - x^2) + (14x - 6x) + (49 - 9) f(x+4)f(x)=8x+40f(x + 4) - f(x) = 8x + 40

The simplified expression for f(x+4)f(x)f(x + 4) - f(x) is:

f(x+4)f(x)=8x+40f(x + 4) - f(x) = 8x + 40

Would you like further details or have any questions? Here are some related questions:

  1. How would the process change if the function were cubic instead of quadratic?
  2. What is the significance of finding the difference f(x+a)f(x)f(x + a) - f(x) in calculus?
  3. Can you calculate f(x+2)f(x)f(x + 2) - f(x) for the given function?
  4. What happens if you compute f(x4)f(x)f(x - 4) - f(x)?
  5. How do you factor the expression f(x+4)f(x)f(x + 4) - f(x) further?

Tip: When evaluating expressions like f(x+a)f(x)f(x + a) - f(x), carefully expand and simplify each step to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic Equations
Function Evaluation
Simplification

Formulas

Quadratic function form

Theorems

-

Suitable Grade Level

High School