Math Problem Statement

Instruction: Evaluate the following functions. Let f(x) = x +1 g(x) = 3x -4

  1. (f + g)(x) =

  2. (f – g)(x) =

  3. (f * g)(x) =

  4. ( f g ) (x) =

Solution

Given the functions f(x)=x+1f(x) = x + 1 and g(x)=3x4g(x) = 3x - 4, let's evaluate the following operations:

  1. (f+g)(x)(f + g)(x): (f+g)(x)=f(x)+g(x)=(x+1)+(3x4)=x+1+3x4=4x3(f + g)(x) = f(x) + g(x) = (x + 1) + (3x - 4) = x + 1 + 3x - 4 = 4x - 3

  2. (fg)(x)(f - g)(x): (fg)(x)=f(x)g(x)=(x+1)(3x4)=x+13x+4=2x+5(f - g)(x) = f(x) - g(x) = (x + 1) - (3x - 4) = x + 1 - 3x + 4 = -2x + 5

  3. (f×g)(x)(f \times g)(x): (f×g)(x)=f(x)g(x)=(x+1)(3x4)=3x24x+3x4=3x2x4(f \times g)(x) = f(x) \cdot g(x) = (x + 1)(3x - 4) = 3x^2 - 4x + 3x - 4 = 3x^2 - x - 4

  4. (fg)(x)\left(\frac{f}{g}\right)(x): (fg)(x)=f(x)g(x)=x+13x4\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x + 1}{3x - 4}

Summary:

  1. (f+g)(x)=4x3(f + g)(x) = 4x - 3
  2. (fg)(x)=2x+5(f - g)(x) = -2x + 5
  3. (f×g)(x)=3x2x4(f \times g)(x) = 3x^2 - x - 4
  4. (fg)(x)=x+13x4\left(\frac{f}{g}\right)(x) = \frac{x + 1}{3x - 4}

Would you like more details or have any questions?


Here are 5 related questions to deepen understanding:

  1. What is the value of (f+g)(2)(f + g)(2)?
  2. What happens when you substitute x=0x = 0 in (fg)(x)\left(\frac{f}{g}\right)(x)?
  3. How do the graphs of f(x)f(x) and g(x)g(x) compare?
  4. Can you factorize (f×g)(x)(f \times g)(x)?
  5. What is the domain of (fg)(x)\left(\frac{f}{g}\right)(x)?

Tip: Always check for restrictions in the domain when dividing functions. In f(x)g(x)\frac{f(x)}{g(x)}, ensure the denominator g(x)0g(x) \neq 0.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Operations
Algebra

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f * g)(x) = f(x) * g(x)
(f / g)(x) = f(x) / g(x)

Theorems

-

Suitable Grade Level

Grades 9-11