Math Problem Statement

Compute the definite integral

∫(e^4,e)( lnx)^3/xdx= Preview Change entry mode

Give the exact value.

Solution

To evaluate the integral

e4e(lnx)3xdx\int_{e^4}^{e} \frac{(\ln x)^3}{x} \, dx

we'll use a substitution method to simplify the integrand.

Step 1: Substitute

Let u=lnxu = \ln x. Then, dudx=1x\frac{du}{dx} = \frac{1}{x}, which implies dx=xdu=eududx = x \, du = e^u \, du.

Now, when x=e4x = e^4, u=ln(e4)=4u = \ln(e^4) = 4, and when x=ex = e, u=ln(e)=1u = \ln(e) = 1. This changes the bounds to uu ranging from 44 to 11.

Step 2: Rewrite the Integral

The integrand (lnx)3x\frac{(\ln x)^3}{x} in terms of uu becomes: (lnx)3xdx=u3du.\frac{(\ln x)^3}{x} \, dx = u^3 \, du.

Thus, the integral becomes: e4e(lnx)3xdx=41u3du.\int_{e^4}^{e} \frac{(\ln x)^3}{x} \, dx = \int_4^1 u^3 \, du.

Step 3: Integrate

Now we compute u3du\int u^3 \, du: u3du=u44.\int u^3 \, du = \frac{u^4}{4}.

Step 4: Evaluate at the Bounds

Evaluating from u=4u = 4 to u=1u = 1: 41u3du=[u44]41=144444.\int_4^1 u^3 \, du = \left[ \frac{u^4}{4} \right]_4^1 = \frac{1^4}{4} - \frac{4^4}{4}.

Calculating each term: =142564=1464=2554.= \frac{1}{4} - \frac{256}{4} = \frac{1}{4} - 64 = -\frac{255}{4}.

Final Answer

e4e(lnx)3xdx=2554.\int_{e^4}^{e} \frac{(\ln x)^3}{x} \, dx = -\frac{255}{4}.

Would you like further explanation on any step?


Related Questions:

  1. How do we apply substitution to simplify different integrals?
  2. How can we approach integration when the integrand includes logarithmic terms?
  3. What other techniques are useful when evaluating definite integrals?
  4. How does changing the order of integration bounds affect the final answer?
  5. Can integrals involving lnx\ln x be solved using parts instead of substitution?

Tip: Always check if substitution changes the bounds; this can prevent mistakes in definite integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integral
Logarithmic Functions

Formulas

Integral of (ln x)^n / x is ∫ (ln x)^n / x dx
Substitution Method: u = ln x, du/dx = 1/x

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12, Early College