Math Problem Statement

Evaluate the integral \( \int_0^1 e^{-4x} \, dx \).

Solution

The given integral is:
01e4xdx.\int_0^1 e^{-4x} \, dx.


Step 1: Integrate e4xe^{-4x}

The integral of eaxe^{ax} with respect to xx is:
\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C, \quad \text{where a is a constant}.

Here, a=4a = -4. Thus:
e4xdx=14e4x=14e4x.\int e^{-4x} \, dx = \frac{1}{-4} e^{-4x} = -\frac{1}{4} e^{-4x}.


Step 2: Apply the limits 00 to 11

Using the Fundamental Theorem of Calculus:
01e4xdx=[14e4x]01.\int_0^1 e^{-4x} \, dx = \left[ -\frac{1}{4} e^{-4x} \right]_0^1.

Substitute the upper and lower limits:
=14e4(1)(14e4(0)).= -\frac{1}{4} e^{-4(1)} - \left( -\frac{1}{4} e^{-4(0)} \right).

Simplify each term:
=14e4+14e0.= -\frac{1}{4} e^{-4} + \frac{1}{4} e^{0}.

Since e0=1e^{0} = 1:
=14e4+14.= -\frac{1}{4} e^{-4} + \frac{1}{4}.

Combine terms:
=14(1e4).= \frac{1}{4} \left( 1 - e^{-4} \right).


Final Answer:

01e4xdx=14(1e4).\int_0^1 e^{-4x} \, dx = \frac{1}{4} \left( 1 - e^{-4} \right).

Let me know if you'd like further clarification!


Related Questions

  1. How would the solution change if the limits were from 00 to 22?
  2. What is the general formula for eaxdx\int e^{ax} \, dx?
  3. How can you approximate e4e^{-4} using a calculator?
  4. What happens to the integral if 4x-4x is replaced by kx-kx?
  5. How would you solve this problem using numerical integration techniques?

Tip:

When dealing with exponential functions in integrals, remember to factor out constants for simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Exponential Functions

Formulas

The integral of \( e^{ax} \) is \( \int e^{ax} \, dx = \frac{1}{a} e^{ax} + C \).
Fundamental Theorem of Calculus: \( \int_a^b f(x) \, dx = F(b) - F(a) \), where \( F'(x) = f(x) \).

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12