Math Problem Statement

Find the value of definite integral 3e^(x)√(e^(x)+3) dx with boundary 0 to ln6

Solution

We are tasked with solving the definite integral:

I=0ln63exex+3dxI = \int_0^{\ln 6} 3e^x \sqrt{e^x + 3} \, dx


Step 1: Substitution

To simplify the integral, we perform a substitution. Let:

u=ex+3u = e^x + 3

Now, differentiate uu with respect to xx:

dudx=ex    du=exdx\frac{du}{dx} = e^x \quad \implies \quad du = e^x \, dx

The boundaries will also change based on u=ex+3u = e^x + 3:

  • When x=0x = 0, u=e0+3=1+3=4u = e^0 + 3 = 1 + 3 = 4,
  • When x=ln6x = \ln 6, u=eln6+3=6+3=9u = e^{\ln 6} + 3 = 6 + 3 = 9.

Thus, the new limits are u=4u = 4 to u=9u = 9.


Step 2: Expressing the integral

From the substitution u=ex+3u = e^x + 3, it follows that ex=u3e^x = u - 3. The integral becomes:

I=493exex+3dxI = \int_4^9 3e^x \sqrt{e^x + 3} \, dx

Substitute ex=u3e^x = u - 3 and dx=duex=duu3dx = \frac{du}{e^x} = \frac{du}{u - 3}. Also, ex+3=u\sqrt{e^x + 3} = \sqrt{u}. Therefore:

I=493(u3)uduu3I = \int_4^9 3(u - 3) \sqrt{u} \frac{du}{u - 3}

Simplify the expression. Notice that the u3u - 3 terms cancel out:

I=493uduI = \int_4^9 3 \sqrt{u} \, du


Step 3: Solve the integral

The integral of u\sqrt{u} can be written as:

u=u12    u12du=u3232=23u32\sqrt{u} = u^{\frac{1}{2}} \quad \implies \quad \int u^{\frac{1}{2}} \, du = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} u^{\frac{3}{2}}

Thus:

493udu=323[u32]49\int_4^9 3 \sqrt{u} \, du = 3 \cdot \frac{2}{3} \left[ u^{\frac{3}{2}} \right]_4^9

Simplify the constants:

493udu=2[u32]49\int_4^9 3 \sqrt{u} \, du = 2 \left[ u^{\frac{3}{2}} \right]_4^9


Step 4: Evaluate the limits

Now evaluate u32u^{\frac{3}{2}} at u=9u = 9 and u=4u = 4:

  • At u=9u = 9: 932=(32)32=33=279^{\frac{3}{2}} = (3^2)^{\frac{3}{2}} = 3^3 = 27,
  • At u=4u = 4: 432=(22)32=23=84^{\frac{3}{2}} = (2^2)^{\frac{3}{2}} = 2^3 = 8.

Subtract the values:

[u32]49=278=19\left[ u^{\frac{3}{2}} \right]_4^9 = 27 - 8 = 19

Thus:

I=219=38I = 2 \cdot 19 = 38


Final Answer:

The value of the definite integral is:

38\boxed{38}


Do you need further clarification or a detailed breakdown of any step?

Here are 5 related questions to explore further:

  1. How to evaluate definite integrals using substitution?
  2. What is the general formula for integrating x\sqrt{x}?
  3. How do you handle integrals with exponential functions and square roots?
  4. How do you change limits of integration under substitution?
  5. What are the properties of definite integrals and their applications?

Tip: When using substitution, always remember to adjust the limits of integration to match the new variable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Definite Integrals
Substitution Method
Exponential Functions

Formulas

Integral of u^(n): ∫u^(n) du = u^(n+1)/(n+1) + C, where n ≠ -1
Substitution Method: If u = g(x), then ∫f(g(x))g'(x) dx = ∫f(u) du
Exponential Function: e^(ln(a)) = a

Theorems

Fundamental Theorem of Calculus
Properties of Definite Integrals

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (AP Calculus)