Math Problem Statement

valuate 9 sin(x) cos(x) dx

by u sub, give me four answers in order. first u = cos(x), then u = sin(x),. After those do it by identifying sin(2x) = 2sin(x)cos(x), finally do it by integrate by parts

Solution

Let's evaluate the integral I=9sin(x)cos(x)dxI = \int 9 \sin(x) \cos(x) \, dx using four different methods, as requested:

Method 1: Substitution with u=cos(x)u = \cos(x)

  1. Substitute u=cos(x)u = \cos(x), hence du=sin(x)dxdu = -\sin(x) dx.

    The integral becomes: I=9sin(x)cos(x)dx=9uduI = \int 9 \sin(x) \cos(x) \, dx = -9 \int u \, du

  2. Integrate: 9udu=9(u22)+C=92cos2(x)+C-9 \int u \, du = -9 \left( \frac{u^2}{2} \right) + C = -\frac{9}{2} \cos^2(x) + C

    Answer 1: I=92cos2(x)+CI = -\frac{9}{2} \cos^2(x) + C


Method 2: Substitution with u=sin(x)u = \sin(x)

  1. Substitute u=sin(x)u = \sin(x), hence du=cos(x)dxdu = \cos(x) dx.

    The integral becomes: I=9uduI = \int 9 u \, du

  2. Integrate: 9udu=9(u22)+C=92sin2(x)+C9 \int u \, du = 9 \left( \frac{u^2}{2} \right) + C = \frac{9}{2} \sin^2(x) + C

    Answer 2: I=92sin2(x)+CI = \frac{9}{2} \sin^2(x) + C


Method 3: Using the identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2 \sin(x) \cos(x)

We recognize that sin(2x)=2sin(x)cos(x)\sin(2x) = 2 \sin(x) \cos(x), so: 9sin(x)cos(x)=92sin(2x)9 \sin(x) \cos(x) = \frac{9}{2} \sin(2x)

Now, integrate: I=92sin(2x)dxI = \int \frac{9}{2} \sin(2x) \, dx

The integral of sin(2x)\sin(2x) is 12cos(2x)-\frac{1}{2} \cos(2x), so: I=92(12cos(2x))+C=94cos(2x)+CI = \frac{9}{2} \left( -\frac{1}{2} \cos(2x) \right) + C = -\frac{9}{4} \cos(2x) + C

Answer 3: I=94cos(2x)+CI = -\frac{9}{4} \cos(2x) + C


Method 4: Integration by Parts

We can apply integration by parts where we let u=sin(x)u = \sin(x) and dv=9cos(x)dxdv = 9 \cos(x) \, dx. Then, du=cos(x)dxdu = \cos(x) \, dx and v=9sin(x)v = 9 \sin(x).

Using the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get:

  1. u=sin(x)u = \sin(x), dv=9cos(x)dxdv = 9 \cos(x) \, dx
  2. v=9sin(x)v = 9 \sin(x), du=cos(x)dxdu = \cos(x) \, dx

Now: I=9sin(x)sin(x)9sin(x)cos(x)dxI = 9 \sin(x) \sin(x) - \int 9 \sin(x) \cos(x) \, dx

This brings us back to the original integral on the right-hand side. So we use algebra to solve: I=92sin2(x)+CI = \frac{9}{2} \sin^2(x) + C

Answer 4: I=92sin2(x)+CI = \frac{9}{2} \sin^2(x) + C


Summary of Answers:

  1. I=92cos2(x)+CI = -\frac{9}{2} \cos^2(x) + C
  2. I=92sin2(x)+CI = \frac{9}{2} \sin^2(x) + C
  3. I=94cos(2x)+CI = -\frac{9}{4} \cos(2x) + C
  4. I=92sin2(x)+CI = \frac{9}{2} \sin^2(x) + C

Would you like further details or clarification on any of these methods?


5 Related Questions:

  1. How do you choose an appropriate substitution for integration?
  2. What is the integration by parts formula, and how is it applied?
  3. Can we generalize the identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2 \sin(x) \cos(x) for higher powers of sine and cosine?
  4. How does the symmetry of sine and cosine functions affect integration?
  5. What is the geometric interpretation of sin(2x)\sin(2x) in integrals?

Tip: Substituting trigonometric identities can often simplify complex integrals and make them easier to compute!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integration
Substitution
Trigonometric Identities
Integration by Parts

Formulas

u-substitution formula: ∫ f(u) du
Trigonometric identity: sin(2x) = 2 sin(x) cos(x)
Integration by parts formula: ∫ u dv = uv - ∫ v du

Theorems

Fundamental Theorem of Calculus
Trigonometric Identity Theorems

Suitable Grade Level

Grades 11-12, College Level Calculus