Math Problem Statement

Estimate L4 and R4 over [0,8] for the function f(x)=2squareroot of x. Use decimal notiation. giver your answer to three decimal places.

Solution

To estimate the integrals L4L_4 (Left Riemann Sum) and R4R_4 (Right Riemann Sum) over the interval [0,8][0, 8] for the function f(x)=2xf(x) = 2\sqrt{x}, follow these steps:

Step 1: Calculate the Width of Each Subinterval

The interval [0,8][0, 8] is divided into 4 subintervals, so each subinterval has a width of: Δx=804=2\Delta x = \frac{8 - 0}{4} = 2

Step 2: Determine the Left and Right Endpoints

  • Left endpoints for L4L_4: x0=0x_0 = 0, x1=2x_1 = 2, x2=4x_2 = 4, x3=6x_3 = 6
  • Right endpoints for R4R_4: x1=2x_1 = 2, x2=4x_2 = 4, x3=6x_3 = 6, x4=8x_4 = 8

Step 3: Calculate the Function Values at the Endpoints

Compute f(x)=2xf(x) = 2\sqrt{x} at each endpoint.

For L4L_4:

  • f(0)=20=0.000f(0) = 2\sqrt{0} = 0.000
  • f(2)=22=2.828f(2) = 2\sqrt{2} = 2.828
  • f(4)=24=4.000f(4) = 2\sqrt{4} = 4.000
  • f(6)=26=4.899f(6) = 2\sqrt{6} = 4.899

For R4R_4:

  • f(2)=22=2.828f(2) = 2\sqrt{2} = 2.828
  • f(4)=24=4.000f(4) = 2\sqrt{4} = 4.000
  • f(6)=26=4.899f(6) = 2\sqrt{6} = 4.899
  • f(8)=28=5.657f(8) = 2\sqrt{8} = 5.657

Step 4: Calculate L4L_4 and R4R_4

Now sum up the function values for each method and multiply by Δx=2\Delta x = 2.

For L4L_4: L4=Δx×(f(0)+f(2)+f(4)+f(6))L_4 = \Delta x \times \left( f(0) + f(2) + f(4) + f(6) \right) L4=2×(0+2.828+4.000+4.899)=2×11.727=23.454L_4 = 2 \times (0 + 2.828 + 4.000 + 4.899) = 2 \times 11.727 = 23.454

For R4R_4: R4=Δx×(f(2)+f(4)+f(6)+f(8))R_4 = \Delta x \times \left( f(2) + f(4) + f(6) + f(8) \right) R4=2×(2.828+4.000+4.899+5.657)=2×17.384=34.768R_4 = 2 \times (2.828 + 4.000 + 4.899 + 5.657) = 2 \times 17.384 = 34.768

Final Answers

  • L4=23.454L_4 = 23.454
  • R4=34.768R_4 = 34.768

Would you like further details or have any questions?

Here are 5 related questions:

  1. How do you calculate the midpoint Riemann sum?
  2. How do you determine the exact area under the curve using definite integrals?
  3. How do the left and right Riemann sums compare with the exact value of the integral?
  4. How would the Riemann sum change if we increased the number of subintervals?
  5. What is the trapezoidal rule, and how does it relate to Riemann sums?

Tip: Increasing the number of subintervals in a Riemann sum typically results in a more accurate approximation of the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sums
Approximation of Integrals
Square Root Function

Formulas

Left Riemann Sum: L_n = Δx * (f(x_0) + f(x_1) + ... + f(x_{n-1}))
Right Riemann Sum: R_n = Δx * (f(x_1) + f(x_2) + ... + f(x_n))
f(x) = 2√x

Theorems

Riemann Sum Theorem

Suitable Grade Level

Grades 11-12