Math Problem Statement
2 +(y - 2)2 +(z + 3)2 = 52 と xy 平面が交わる部分 は円となる。この円の中心座標は b - ケ , コ , サ l であり,半径は シ である。
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
3D Coordinate Geometry
Equation of a Sphere
Intersection of Plane and Sphere
Circle in 3D
Formulas
Equation of a Sphere: (x - x0)^2 + (y - y0)^2 + (z - z0)^2 = r^2
Theorems
-
Suitable Grade Level
High School
Related Recommendation
Finding the Center and Radius of a Sphere with Equation (x - 2)^2 + (y - 5)^2 + (z + 6)^2 = 25
3D Geometry: Sphere-Plane Intersection Analysis
Equation of Spheres Touching the yz-Plane - Center at (2, -3, 6)
Equation of Spheres Centered at (2, -3, 6) Touching the xy-Plane
Solving the Equation x^2 + y^2 = 72 with Graphical Illustration