Math Problem Statement

Suppose S={s1, s2, s3, s4, s5, s6}, P(s1)=P(s2)= P(s3)=1/4, P(s4)=p(s5)=1/16, P(s6)=1/8. What is the entropy of S? (Use log2)

Solution

The entropy H(S)H(S) of a discrete random variable SS with probabilities P(si)P(s_i) is given by:

H(S)=i=16P(si)log2P(si)H(S) = - \sum_{i=1}^{6} P(s_i) \log_2 P(s_i)

Using the given probabilities for each element in the set S={s1,s2,s3,s4,s5,s6}S = \{s_1, s_2, s_3, s_4, s_5, s_6\}:

P(s1)=P(s2)=P(s3)=14,P(s4)=P(s5)=116,P(s6)=18P(s_1) = P(s_2) = P(s_3) = \frac{1}{4}, \quad P(s_4) = P(s_5) = \frac{1}{16}, \quad P(s_6) = \frac{1}{8}

Now, we calculate the entropy:

H(S)=(3×14log214+2×116log2116+18log218)H(S) = - \left( 3 \times \frac{1}{4} \log_2 \frac{1}{4} + 2 \times \frac{1}{16} \log_2 \frac{1}{16} + \frac{1}{8} \log_2 \frac{1}{8} \right)

Each logarithmic term can be simplified:

log214=2,log2116=4,log218=3\log_2 \frac{1}{4} = -2, \quad \log_2 \frac{1}{16} = -4, \quad \log_2 \frac{1}{8} = -3

Now substitute these values back into the equation:

H(S)=(3×14×(2)+2×116×(4)+18×(3))H(S) = - \left( 3 \times \frac{1}{4} \times (-2) + 2 \times \frac{1}{16} \times (-4) + \frac{1}{8} \times (-3) \right)

Simplify each term:

= - \left( -\frac{3}{2} + -\frac{1}{2} + -\frac{3}{8} \right)$$ Combining terms: $$H(S) = \frac{3}{2} + \frac{1}{2} + \frac{3}{8} = 2 + 0.375 = 2.375$$ Thus, the entropy of $$S$$ is: $$H(S) = 2.375 \, \text{bits}$$ Would you like further clarification on this or any specific step? Here are 5 related questions: 1. How does entropy change with more equally probable outcomes? 2. How is entropy used in information theory? 3. What happens to entropy if one outcome becomes much more probable than others? 4. Can entropy ever be negative? 5. How do you calculate entropy when probabilities are not powers of 2? **Tip:** Always double-check the probabilities sum to 1 to ensure correctness in entropy calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Information Theory
Entropy
Probability

Formulas

H(S) = - ∑ P(si) * log2(P(si))

Theorems

Shannon Entropy

Suitable Grade Level

Undergraduate Level / Advanced High School