Math Problem Statement

Find the derivative of the given functions and evaluate the provided integrals.

Solution

Let’s solve the problems from the image step-by-step.


1. Find the derivative (dy/dx) of the following functions:

(a) y=x5y = x^5

  • Using the power rule (ddx[xn]=nxn1\frac{d}{dx}[x^n] = nx^{n-1}): dydx=5x4\frac{dy}{dx} = 5x^{4}

(b) y=e4xy = e^{4x}

  • Using the chain rule for eue^{u}, where u=4xu = 4x: dydx=4e4x\frac{dy}{dx} = 4e^{4x}

(c) y=lnxy = \ln x

  • The derivative of lnx\ln x is: dydx=1x\frac{dy}{dx} = \frac{1}{x}

(d) y=sin(2x)y = \sin(2x)

  • Using the chain rule for sin(u)\sin(u), where u=2xu = 2x: dydx=2cos(2x)\frac{dy}{dx} = 2\cos(2x)

2. Evaluate the following integrals:

(a) 15xdx\int 15x \, dx

  • Using the power rule for integration: xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C 15xdx=15x22+C=15x22+C\int 15x \, dx = 15 \cdot \frac{x^{2}}{2} + C = \frac{15x^2}{2} + C

(b) (3x24)dx\int (3x^2 - 4) \, dx

  • Split the integral and apply the power rule: 3x2dx4dx=3x334x+C=x34x+C\int 3x^2 \, dx - \int 4 \, dx = 3 \cdot \frac{x^3}{3} - 4x + C = x^3 - 4x + C

(c) 3x4dx\int \frac{3}{x^4} \, dx

  • Rewrite 1x4\frac{1}{x^4} as x4x^{-4} and apply the power rule: 3x4dx=3x33+C=x3+C=1x3+C\int 3x^{-4} \, dx = 3 \cdot \frac{x^{-3}}{-3} + C = -x^{-3} + C = -\frac{1}{x^3} + C

(d) (5x2+2cos(x))dx\int (5x^2 + 2\cos(x)) \, dx

  • Split the integral: 5x2dx+2cos(x)dx\int 5x^2 \, dx + \int 2\cos(x) \, dx
    • For 5x2dx\int 5x^2 \, dx: 5x33=5x335 \cdot \frac{x^3}{3} = \frac{5x^3}{3}
    • For 2cos(x)dx\int 2\cos(x) \, dx: 2sin(x)2 \sin(x)
    • Combining: 5x33+2sin(x)+C\frac{5x^3}{3} + 2\sin(x) + C

Final Results:

  1. Derivatives:

    • (a) dydx=5x4\frac{dy}{dx} = 5x^4
    • (b) dydx=4e4x\frac{dy}{dx} = 4e^{4x}
    • (c) dydx=1x\frac{dy}{dx} = \frac{1}{x}
    • (d) dydx=2cos(2x)\frac{dy}{dx} = 2\cos(2x)
  2. Integrals:

    • (a) 15xdx=15x22+C\int 15x \, dx = \frac{15x^2}{2} + C
    • (b) (3x24)dx=x34x+C\int (3x^2 - 4) \, dx = x^3 - 4x + C
    • (c) 3x4dx=1x3+C\int \frac{3}{x^4} \, dx = -\frac{1}{x^3} + C
    • (d) (5x2+2cos(x))dx=5x33+2sin(x)+C\int (5x^2 + 2\cos(x)) \, dx = \frac{5x^3}{3} + 2\sin(x) + C

Do you want a deeper explanation or any clarifications?

Expanding Questions:

  1. How is the power rule applied to differentiation and integration?
  2. What is the chain rule, and when do we use it in differentiation?
  3. Why do we add a constant CC after integration?
  4. What are the specific conditions for using logarithmic differentiation?
  5. How can trigonometric integrals like cos(x)dx\int \cos(x) \, dx be solved?

Tip:

Always check if the function has a constant multiplier or requires a substitution before directly applying the differentiation or integration rules!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Integration
Calculus

Formulas

Power rule for differentiation: d/dx[x^n] = n*x^(n-1)
Derivative of e^x: d/dx[e^u] = u'*e^u
Derivative of ln(x): d/dx[ln(x)] = 1/x
Derivative of sin(u): d/dx[sin(u)] = u'*cos(u)
Power rule for integration: ∫x^n dx = x^(n+1)/(n+1) + C
Integral of cos(x): ∫cos(x) dx = sin(x) + C

Theorems

Fundamental Theorem of Calculus
Chain Rule in Differentiation

Suitable Grade Level

University (First Year Engineering)