Math Problem Statement

El campo eléctrico E en la figura es paralelo en todo lugar al eje x, por lo que las componentes Ey y Ez son iguales a cero. La componente x del campo Ex depende de x, pero no de y ni de z. En los puntos del plano yz (donde x = 0), Ex = 125 N/C. ¿Cuál es el flujo eléctrico a través de la superficie I en la figura? b) ¿Cuál es el flujo eléctrico a través de la superficie II? c) Si el volumen ilustrado tiene una carga total de -24.0 nC, ¿cuáles son la magnitud y dirección de E en la cara opuesta a la superficie I? d) ¿El campo eléctrico es producido por cargas dentro del bloque o también se debe a cargas fuera del bloque?

Solution

Let's solve the problem step by step. The information provided includes:

  1. The electric field E\vec{E} is parallel to the xx-axis, meaning Ey=Ez=0E_y = E_z = 0 and only ExE_x is non-zero.
  2. The value of ExE_x at x=0x = 0 (on the yzyz-plane) is Ex=125N/CE_x = 125 \, \text{N/C}.
  3. There are two surfaces, labeled I and II, through which we need to calculate the electric flux.
  4. A volume containing a charge of 24.0nC-24.0 \, \text{nC} is mentioned.
  5. We need to determine the magnitude and direction of EE on the opposite face of the block, as well as whether the electric field is produced by charges inside or outside the block.

Let's tackle each part of the question.

Part (a): Electric Flux through Surface I

The electric flux Φ\Phi through a surface is given by:

Φ=EdA\Phi = \int \vec{E} \cdot d\vec{A}

For surface I, which is perpendicular to the xx-axis, the area vector dAd\vec{A} points in the xx-direction and has a magnitude of A=3.0m×2.0m=6.0m2A = 3.0 \, \text{m} \times 2.0 \, \text{m} = 6.0 \, \text{m}^2.

Since Ex=125N/CE_x = 125 \, \text{N/C} at x=0x = 0, the flux through surface I is:

ΦI=Ex×A=125N/C×6.0m2=750Nm2/C\Phi_I = E_x \times A = 125 \, \text{N/C} \times 6.0 \, \text{m}^2 = 750 \, \text{N} \cdot \text{m}^2/\text{C}

Part (b): Electric Flux through Surface II

For surface II, we need to determine ExE_x at x=1.0mx = 1.0 \, \text{m}. This value could vary depending on the charge distribution within the block.

If the electric field is constant (i.e., if ExE_x remains 125N/C125 \, \text{N/C} across the entire region), the flux through surface II would be:

ΦII=Ex×A=125N/C×6.0m2=750Nm2/C\Phi_{II} = -E_x \times A = -125 \, \text{N/C} \times 6.0 \, \text{m}^2 = -750 \, \text{N} \cdot \text{m}^2/\text{C}

The negative sign indicates that the flux is in the opposite direction to the flux through surface I.

Part (c): Electric Field on the Opposite Face

To find the electric field on the opposite face (at x=1.0mx = 1.0 \, \text{m}), we need to consider Gauss's law:

Φtotal=qencϵ0\Phi_{\text{total}} = \frac{q_{\text{enc}}}{\epsilon_0}

where qenc=24.0nC=24.0×109Cq_{\text{enc}} = -24.0 \, \text{nC} = -24.0 \times 10^{-9} \, \text{C}.

The total flux is the sum of the fluxes through surfaces I and II, which should equal qencϵ0\frac{q_{\text{enc}}}{\epsilon_0}. Solving this will give us the exact value of ExE_x on the opposite face.

Part (d): Determining the Source of the Electric Field

To determine whether the electric field is caused by charges inside or outside the block, we can use Gauss’s law and the fact that the net flux through the entire closed surface (all sides of the block) should match the enclosed charge divided by ϵ0\epsilon_0.

If there is no flux through other faces, it suggests that the electric field observed is due to the charge inside the block itself, as any external field would not contribute net flux across only two faces.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Electric Field
Electric Flux
Gauss's Law

Formulas

Electric flux: Φ = ∫E · dA
Gauss's Law: Φ_total = q_enc/ε_0

Theorems

Gauss's Law

Suitable Grade Level

Grades 11-12