Math Problem Statement

Find the eigenvalues \(\lambda_1 < \lambda_2 < \lambda_3\) and associated unit eigenvectors \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\) of the symmetric matrix \(A\).

Solution

To solve this problem, I will find the eigenvalues λ1,λ2,λ3\lambda_1, \lambda_2, \lambda_3 and their associated unit eigenvectors u1,u2,u3\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 for the symmetric matrix AA:

3 & 2 & -5 \\ 2 & -4 & 2 \\ -5 & 2 & 3 \end{bmatrix}.$$ Let me calculate the eigenvalues and eigenvectors systematically.import numpy as np from numpy.linalg import eig # Define the symmetric matrix A A = np.array([[3, 2, -5], [2, -4, 2], [-5, 2, 3]]) # Compute eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Sort eigenvalues and eigenvectors in ascending order of eigenvalues sorted_indices = np.argsort(eigenvalues) eigenvalues_sorted = eigenvalues[sorted_indices] eigenvectors_sorted = eigenvectors[:, sorted_indices] # Normalize eigenvectors to ensure they are unit vectors eigenvectors_unit = eigenvectors_sorted / np.linalg.norm(eigenvectors_sorted, axis=0) # Display results to the user import pandas as pd results = pd.DataFrame({ "Eigenvalue": eigenvalues_sorted, "Eigenvector (unit)": [eigenvectors_unit[:, i] for i in range(3)] }) import ace_tools as tools; tools.display_dataframe_to_user(name="Eigenvalues and Eigenvectors Results", dataframe=results) Eigenvalue Eigenvector (unit) 0 -6.000000e+00 [-0.40824829046386324, 0.8164965809277259, -0.... 1 -4.546060e-16 [-0.5773502691896257, -0.5773502691896257, -0.... 2 8.000000e+00 [-0.7071067811865474, 1.6612362910446242e-18, ... Eigenvalue Eigenvector (unit) 0 -6.000000e+00 [-0.40824829046386324, 0.8164965809277259, -0.... 1 -4.546060e-16 [-0.5773502691896257, -0.5773502691896257, -0.... 2 8.000000e+00 [-0.7071067811865474, 1.6612362910446242e-18, ...successI have calculated the eigenvalues and their associated unit eigenvectors for the matrix $$A$$. You can review the detailed results. Let me know if you have questions or need a further breakdown. Here are five related questions: 1. How are eigenvalues derived from the characteristic polynomial? 2. What does the orthogonality of eigenvectors signify for symmetric matrices? 3. How can we verify the unit eigenvectors by normalizing them? 4. How are eigenvalues and eigenvectors applied in real-world scenarios, like physics or engineering? 5. Can we explain why the eigenvalues of symmetric matrices are always real? **Tip**: For symmetric matrices, eigenvectors corresponding to distinct eigenvalues are guaranteed to be orthogonal.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues and Eigenvectors
Symmetric Matrices

Formulas

\(\det(A - \lambda I) = 0\) to find eigenvalues
Normalization of eigenvectors using \(\mathbf{v} / ||\mathbf{v}||\)

Theorems

Spectral Theorem for Symmetric Matrices

Suitable Grade Level

Undergraduate Level