Math Problem Statement

For the given matrix A=[■(4&1@2&3)]. Find its eigenvalues and eigenvectors.

Solution

The matrix given is A=(4123)A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}. To find the eigenvalues and eigenvectors of this matrix, we follow the steps below.

1. Eigenvalues

The eigenvalues λ\lambda are found by solving the characteristic equation:

det(AλI)=0\det(A - \lambda I) = 0

Where II is the identity matrix and λ\lambda is a scalar (the eigenvalue). Let's compute AλIA - \lambda I:

AλI=(4123)λ(1001)=(4λ123λ)A - \lambda I = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix}

Now, find the determinant of AλIA - \lambda I:

det(AλI)=det(4λ123λ)=(4λ)(3λ)(1)(2)\det(A - \lambda I) = \det\begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - (1)(2)

Expanding the determinant:

(4λ)(3λ)2=127λ+λ22=λ27λ+10(4 - \lambda)(3 - \lambda) - 2 = 12 - 7\lambda + \lambda^2 - 2 = \lambda^2 - 7\lambda + 10

Set this equal to zero to find the eigenvalues:

λ27λ+10=0\lambda^2 - 7\lambda + 10 = 0

Solve this quadratic equation using the quadratic formula:

λ=(7)±(7)24(1)(10)2(1)=7±49402=7±92=7±32\lambda = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(10)}}{2(1)} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm \sqrt{9}}{2} = \frac{7 \pm 3}{2}

Thus, the eigenvalues are:

λ1=7+32=5,λ2=732=2\lambda_1 = \frac{7 + 3}{2} = 5, \quad \lambda_2 = \frac{7 - 3}{2} = 2

2. Eigenvectors

To find the eigenvectors corresponding to each eigenvalue, we solve the equation:

(AλI)v=0(A - \lambda I) \mathbf{v} = 0

Eigenvector for λ1=5\lambda_1 = 5:

Substitute λ1=5\lambda_1 = 5 into AλIA - \lambda I:

A5I=(451235)=(1122)A - 5I = \begin{pmatrix} 4 - 5 & 1 \\ 2 & 3 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}

Now, solve (A5I)v=0(A - 5I) \mathbf{v} = 0, i.e.,

(1122)(v1v2)=(00)\begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}

This gives the system of equations:

v1+v2=0- v_1 + v_2 = 0 2v12v2=02v_1 - 2v_2 = 0

From the first equation, v1=v2v_1 = v_2. Thus, the eigenvector corresponding to λ1=5\lambda_1 = 5 is:

v1=(11)\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}

Eigenvector for λ2=2\lambda_2 = 2:

Substitute λ2=2\lambda_2 = 2 into AλIA - \lambda I:

A2I=(421232)=(2121)A - 2I = \begin{pmatrix} 4 - 2 & 1 \\ 2 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}

Now, solve (A2I)v=0(A - 2I) \mathbf{v} = 0, i.e.,

(2121)(v1v2)=(00)\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}

This gives the system of equations:

2v1+v2=02v_1 + v_2 = 0 2v1+v2=02v_1 + v_2 = 0

Both equations are the same, so we get v2=2v1v_2 = -2v_1. Thus, the eigenvector corresponding to λ2=2\lambda_2 = 2 is:

v2=(12)\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}

Summary:

  • Eigenvalues: λ1=5\lambda_1 = 5, λ2=2\lambda_2 = 2
  • Eigenvector for λ1=5\lambda_1 = 5: v1=(11)\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
  • Eigenvector for λ2=2\lambda_2 = 2: v2=(12)\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}

Would you like further details on any of these steps, or have any specific questions?


Here are five related questions:

  1. How do you interpret eigenvalues and eigenvectors geometrically?
  2. Can a matrix have complex eigenvalues?
  3. What is the significance of the determinant when finding eigenvalues?
  4. How do eigenvectors relate to the diagonalization of a matrix?
  5. How are eigenvalues used in solving systems of differential equations?

Tip: The eigenvectors corresponding to distinct eigenvalues are always linearly independent!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues and Eigenvectors
Matrix Operations

Formulas

Characteristic equation: det(A - λI) = 0
Quadratic formula: λ = (-b ± √(b^2 - 4ac)) / 2a
Eigenvector equation: (A - λI)v = 0

Theorems

Spectral Theorem
Cayley-Hamilton Theorem

Suitable Grade Level

Undergraduate