Math Problem Statement

the matrix A=[[1,0,0],[0,2,2],[0,-1,-1]] has two real eigenvalues, one of multiplicty 1 and one of multiplicty 2. Find the eigenvalues and a basis for each eigenspace.

Solution

To find the eigenvalues and the corresponding eigenspaces for the matrix A=[100022011]A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -1 & -1 \end{bmatrix}, we follow these steps:

Step 1: Find the characteristic equation

The eigenvalues λ\lambda of a matrix AA are found by solving the characteristic equation:

det(AλI)=0\text{det}(A - \lambda I) = 0

Where II is the identity matrix and λ\lambda is the eigenvalue. The matrix AλIA - \lambda I is:

AλI=[1λ0002λ2011λ]A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & -1 & -1 - \lambda \end{bmatrix}

Now, compute the determinant:

det(AλI)=det[1λ0002λ2011λ]\text{det}(A - \lambda I) = \text{det} \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & -1 & -1 - \lambda \end{bmatrix}

This is a block triangular matrix, so the determinant is the product of the diagonal blocks:

det(AλI)=(1λ)det[2λ211λ]\text{det}(A - \lambda I) = (1 - \lambda) \cdot \text{det} \begin{bmatrix} 2 - \lambda & 2 \\ -1 & -1 - \lambda \end{bmatrix}

Now, compute the determinant of the 2x2 matrix:

det[2λ211λ]=(2λ)(1λ)(2)=λ2+λ\text{det} \begin{bmatrix} 2 - \lambda & 2 \\ -1 & -1 - \lambda \end{bmatrix} = (2 - \lambda)(-1 - \lambda) - (-2) = \lambda^2 + \lambda

So the characteristic equation becomes:

(1λ)(λ2+λ)=0(1 - \lambda)(\lambda^2 + \lambda) = 0

Step 2: Solve for the eigenvalues

We can now solve this equation:

(1λ)(λ2+λ)=0(1 - \lambda)(\lambda^2 + \lambda) = 0

This gives two factors:

  1. 1λ=01 - \lambda = 0λ=1\lambda = 1
  2. λ(λ+1)=0\lambda(\lambda + 1) = 0λ=0\lambda = 0 or λ=1\lambda = -1

Thus, the eigenvalues are λ1=1\lambda_1 = 1, λ2=0\lambda_2 = 0, and λ3=1\lambda_3 = -1. The eigenvalue λ=1\lambda = 1 has multiplicity 1, and the eigenvalue λ=1\lambda = -1 has multiplicity 2.

Step 3: Find the eigenspaces

Now, let's find a basis for each eigenspace by solving (AλI)v=0(A - \lambda I)\mathbf{v} = 0 for each eigenvalue.

Eigenvalue λ=1\lambda = 1

For λ=1\lambda = 1, solve (AI)v=0(A - I)\mathbf{v} = 0:

AI=[000012012]A - I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix}

Solving this system, we have the equations:

x2+2x3=0andx22x3=0x_2 + 2x_3 = 0 \quad \text{and} \quad -x_2 - 2x_3 = 0

This gives x2=2x3x_2 = -2x_3, so the solution is of the form:

v=[100]\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}

Thus, the basis for the eigenspace corresponding to λ=1\lambda = 1 is {[100]}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}.

Eigenvalue λ=1\lambda = -1

For λ=1\lambda = -1, solve (A+I)v=0(A + I)\mathbf{v} = 0:

A+I=[200032010]A + I = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & -1 & 0 \end{bmatrix}

This gives the system of equations:

3x2+2x3=0andx2=03x_2 + 2x_3 = 0 \quad \text{and} \quad -x_2 = 0

From the second equation, we get x2=0x_2 = 0. Plugging this into the first equation gives 2x3=02x_3 = 0, so x3=0x_3 = 0. Thus, the solution is:

v=[011]\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}

Therefore, the basis for the eigenspace corresponding to λ=1\lambda = -1 is {[021]}\left\{ \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \right\}.

Let me know if you

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenspaces
Matrices

Formulas

det(A - λI) = 0 (characteristic equation)
Eigenvalue equation: (A - λI)v = 0

Theorems

Characteristic Polynomial Theorem
Eigenspace Theorem

Suitable Grade Level

Undergraduate (Linear Algebra Course)