Math Problem Statement
eigenfunction for a one-dimensional quantum harmonic oscillator is generally written as:
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Quantum Mechanics
Harmonic Oscillators
Wave Functions
Eigenfunctions
Formulas
\psi_n(x) = \left( \frac{1}{\sqrt{2^n n!}} \right) \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-\frac{m \omega x^2}{2 \hbar}} H_n \left( \sqrt{\frac{m \omega}{\hbar}} x \right)
E_n = \left( n + \frac{1}{2} \right) \hbar \omega
Theorems
Schrödinger Equation
Hermite Polynomial Properties
Quantum Harmonic Oscillator Energy Levels
Suitable Grade Level
Undergraduate Physics
Related Recommendation
Energy Levels in the Quantum Harmonic Oscillator Using Schrodinger Equation
Ground State Eigenfunction of a Linear Harmonic Oscillator in Quantum Mechanics
Quantum Harmonic Oscillator Energy Levels and Schrödinger Equation
Understanding Uncertainty in Energy of Quantum Harmonic Oscillator
Quantum Mechanics Observation Problem: p(x,t) = δ(x) * H(t) and Wave Function