Math Problem Statement

eigenfunction for a one-dimensional quantum harmonic oscillator is generally written as:

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quantum Mechanics
Harmonic Oscillators
Wave Functions
Eigenfunctions

Formulas

\psi_n(x) = \left( \frac{1}{\sqrt{2^n n!}} \right) \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-\frac{m \omega x^2}{2 \hbar}} H_n \left( \sqrt{\frac{m \omega}{\hbar}} x \right)
E_n = \left( n + \frac{1}{2} \right) \hbar \omega

Theorems

Schrödinger Equation
Hermite Polynomial Properties
Quantum Harmonic Oscillator Energy Levels

Suitable Grade Level

Undergraduate Physics