Math Problem Statement

To solve the double integral

∫ 0 1 ∫ 0 1 − 𝑥 ( 𝑥 2 + 𝑦 2 )   𝑑 𝑦   𝑑 𝑥 , ∫ 0 1 ​ ∫ 0 1−x ​ (x 2 +y 2 )dydx, and verify that it equals 1 6 6 1 ​ , let’s proceed step by step.

Solution

To solve and verify the given double integral:

0101x(x2+y2)dydx,\int_0^1 \int_0^{1-x} (x^2 + y^2) \, dy \, dx,

and check if it equals 16\frac{1}{6}, let's proceed step by step:


Step 1: Rewrite the Double Integral

The integral is: 0101x(x2+y2)dydx.\int_0^1 \int_0^{1-x} (x^2 + y^2) \, dy \, dx.

The limits for yy are from 0 to 1x1-x, and for xx, they are from 0 to 1.


Step 2: Integrate with Respect to yy

For the inner integral: 01x(x2+y2)dy,\int_0^{1-x} (x^2 + y^2) \, dy,

we separate x2x^2 and y2y^2 for easier integration: 01xx2dy+01xy2dy.\int_0^{1-x} x^2 \, dy + \int_0^{1-x} y^2 \, dy.

First Term:

01xx2dy=x201x1dy=x2[y]01x=x2(1x).\int_0^{1-x} x^2 \, dy = x^2 \int_0^{1-x} 1 \, dy = x^2 [y]_0^{1-x} = x^2 (1-x).

Second Term:

01xy2dy=[y33]01x=(1x)33.\int_0^{1-x} y^2 \, dy = \left[\frac{y^3}{3}\right]_0^{1-x} = \frac{(1-x)^3}{3}.

Combining both terms: 01x(x2+y2)dy=x2(1x)+(1x)33.\int_0^{1-x} (x^2 + y^2) \, dy = x^2 (1-x) + \frac{(1-x)^3}{3}.


Step 3: Integrate with Respect to xx

Now, the outer integral becomes: 01[x2(1x)+(1x)33]dx.\int_0^1 \left[ x^2 (1-x) + \frac{(1-x)^3}{3} \right] dx.

Separate into two integrals: 01x2(1x)dx+01(1x)33dx.\int_0^1 x^2 (1-x) \, dx + \int_0^1 \frac{(1-x)^3}{3} \, dx.

First Term:

01x2(1x)dx=01(x2x3)dx=01x2dx01x3dx.\int_0^1 x^2 (1-x) \, dx = \int_0^1 (x^2 - x^3) \, dx = \int_0^1 x^2 \, dx - \int_0^1 x^3 \, dx.

01x2dx=[x33]01=13.\int_0^1 x^2 \, dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}. 01x3dx=[x44]01=14.\int_0^1 x^3 \, dx = \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4}.

01x2(1x)dx=1314=412312=112.\int_0^1 x^2 (1-x) \, dx = \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12}.

Second Term:

01(1x)33dx=1301(1x)3dx.\int_0^1 \frac{(1-x)^3}{3} \, dx = \frac{1}{3} \int_0^1 (1-x)^3 \, dx.

Let u=1xu = 1-x, so du=dxdu = -dx and when x=0,u=1x = 0, u = 1; when x=1,u=0x = 1, u = 0.

01(1x)3dx=10u3(du)=01u3du.\int_0^1 (1-x)^3 \, dx = \int_1^0 u^3 (-du) = \int_0^1 u^3 \, du.

01u3du=[u44]01=14.\int_0^1 u^3 \, du = \left[\frac{u^4}{4}\right]_0^1 = \frac{1}{4}.

Thus: 01(1x)33dx=1314=112.\int_0^1 \frac{(1-x)^3}{3} \, dx = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}.


Step 4: Combine Results

Now sum the two parts: 01[x2(1x)+(1x)33]dx=112+112=212=16.\int_0^1 \left[ x^2 (1-x) + \frac{(1-x)^3}{3} \right] dx = \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6}.


Verification

The calculated result is: 16,\boxed{\frac{1}{6}}, which matches the given value. The integral is verified.


Would you like further clarification or a different example?


Related Questions:

  1. How does changing the bounds of integration affect the result?
  2. Can we solve this using a numerical integration method?
  3. What are other real-world applications of double integrals?
  4. How do symmetry properties simplify double integrals?
  5. Can this problem be extended to triple integrals?

Tip:

Always sketch the integration region to confirm bounds and simplify integration.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integration
Limits of Integration
Substitution in Integrals

Formulas

Double integral: ∫∫ f(x, y) dx dy
Integration of powers: ∫ x^n dx = x^(n+1)/(n+1) + C

Theorems

Fubini's Theorem for iterated integrals

Suitable Grade Level

Grades 11-12 or early college