Math Problem Statement

Integral from 0 to 2 Integral from y squared to 4 y minus y squared 100 left parenthesis y plus 4 right parenthesis dx dy Part 2 Evaluate the integral in the previous step.

Solution

We are tasked with evaluating the double integral:

02y24(yy2)100(y+4)dxdy\int_0^2 \int_{y^2}^4 \left( y - y^2 \right) 100 \left( y + 4 \right) \, dx \, dy

Step 1: Deal with the inner integral

The inner integral is with respect to xx, where the limits of integration are from x=y2x = y^2 to x=4x = 4. Since the expression (yy2)100(y+4)\left( y - y^2 \right) 100 \left( y + 4 \right) does not contain xx, it acts as a constant with respect to xx. Therefore, we can pull this out of the inner integral:

y24(yy2)100(y+4)dx=(yy2)100(y+4)(4y2)\int_{y^2}^4 \left( y - y^2 \right) 100 \left( y + 4 \right) \, dx = \left( y - y^2 \right) 100 \left( y + 4 \right) \cdot \left( 4 - y^2 \right)

Step 2: Expand the expression

Now, expand the expression (yy2)100(y+4)(4y2)\left( y - y^2 \right) 100 \left( y + 4 \right) \left( 4 - y^2 \right).

First, expand (yy2)(y+4)\left( y - y^2 \right) \left( y + 4 \right):

(yy2)(y+4)=y2+4yy34y2=y3+y2+4y\left( y - y^2 \right) \left( y + 4 \right) = y^2 + 4y - y^3 - 4y^2 = -y^3 + y^2 + 4y

Now multiply this by 100(4y2)100 \left( 4 - y^2 \right):

100(y3+y2+4y)(4y2)100 \left( -y^3 + y^2 + 4y \right) \left( 4 - y^2 \right)

Distribute the terms:

=100[(y3)(4y2)+(y2)(4y2)+(4y)(4y2)]= 100 \left[ (-y^3)(4 - y^2) + (y^2)(4 - y^2) + (4y)(4 - y^2) \right]

Simplify each product:

(y3)(4y2)=4y3+y5(-y^3)(4 - y^2) = -4y^3 + y^5 (y2)(4y2)=4y2y4(y^2)(4 - y^2) = 4y^2 - y^4 (4y)(4y2)=16y4y3(4y)(4 - y^2) = 16y - 4y^3

Now, combine all the terms:

=100(4y3+y5+4y2y4+16y4y3)= 100 \left( -4y^3 + y^5 + 4y^2 - y^4 + 16y - 4y^3 \right)

Simplify:

=100(y5y48y3+4y2+16y)= 100 \left( y^5 - y^4 - 8y^3 + 4y^2 + 16y \right)

Step 3: Outer integral

Now we compute the outer integral:

02(y5y48y3+4y2+16y)dy\int_0^2 \left( y^5 - y^4 - 8y^3 + 4y^2 + 16y \right) \, dy

Compute each term separately:

02y5dy=[y66]02=646=323\int_0^2 y^5 \, dy = \left[ \frac{y^6}{6} \right]_0^2 = \frac{64}{6} = \frac{32}{3} 02y4dy=[y55]02=325\int_0^2 y^4 \, dy = \left[ \frac{y^5}{5} \right]_0^2 = \frac{32}{5} 028y3dy=8[y44]02=8×4=32\int_0^2 8y^3 \, dy = 8 \left[ \frac{y^4}{4} \right]_0^2 = 8 \times 4 = 32 024y2dy=4[y33]02=4×83=323\int_0^2 4y^2 \, dy = 4 \left[ \frac{y^3}{3} \right]_0^2 = 4 \times \frac{8}{3} = \frac{32}{3} 0216ydy=16[y22]02=16×2=32\int_0^2 16y \, dy = 16 \left[ \frac{y^2}{2} \right]_0^2 = 16 \times 2 = 32

Step 4: Combine the results

Now combine the results of the outer integrals:

100(32332532+323+32)100 \left( \frac{32}{3} - \frac{32}{5} - 32 + \frac{32}{3} + 32 \right)

First, simplify the terms inside the parentheses:

= 100 \left( \frac{64}{3} - \frac{32}{5} \right)$$ Find a common denominator: $$= 100 \left( \frac{320}{15} - \frac{96}{15} \right) = 100 \times \frac{224}{15}$$ Finally: $$= \frac{22400}{15} = 1493.\overline{3}$$ Thus, the value of the double integral is approximately: $$\boxed{1493.\overline{3}}$$ Would you like further details or have any questions? ### 5 Related Questions: 1. How do you handle double integrals with variable limits? 2. What happens if we swap the order of integration in this type of problem? 3. Can this problem be solved using polar coordinates? 4. How would adding more terms in the integrand affect the solution? 5. What is the significance of each region in a double integral? ### Tip: For double integrals, it’s often helpful to simplify the inner integral first by considering the variables independently before handling the outer integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Polynomial Integration

Formulas

∫∫ f(x, y) dx dy
Expansion of polynomials: (y - y^2)(y + 4)
Common denominator method: a/b - c/d = (ad - bc) / bd

Theorems

Fundamental Theorem of Calculus for multiple integrals

Suitable Grade Level

College Level (Calculus II or III)