Math Problem Statement

f(x) = √(|3x - 8| - 5).

Solution

The function f(x)=3x85f(x) = \sqrt{|3x - 8| - 5} is defined under certain conditions. Let’s analyze it in detail.

Step 1: Analyze the inner expression 3x85|3x - 8| - 5

  1. The square root function y\sqrt{y} is only defined for y0y \geq 0. Hence, we need: 3x850.|3x - 8| - 5 \geq 0.

  2. Rearranging, we get: 3x85.|3x - 8| \geq 5.

  3. The absolute value inequality ua|u| \geq a splits into two cases: 3x85or3x85.3x - 8 \geq 5 \quad \text{or} \quad 3x - 8 \leq -5.

Step 2: Solve each inequality

Case 1: 3x853x - 8 \geq 5 3x13    x133.3x \geq 13 \implies x \geq \frac{13}{3}.

Case 2: 3x853x - 8 \leq -5 3x3    x1.3x \leq 3 \implies x \leq 1.

Step 3: Combine the results

The domain of f(x)f(x) is the union of the intervals where the inequality holds: x(,1][133,).x \in (-\infty, 1] \cup \left[\frac{13}{3}, \infty\right).

Final Function Domain

The domain of f(x)f(x) is: x(,1][133,).x \in (-\infty, 1] \cup \left[\frac{13}{3}, \infty\right).


Graphical Behavior

  • The function has a square root, so it is always non-negative.
  • The absolute value introduces a piecewise behavior around x=83x = \frac{8}{3}, where 3x8|3x - 8| transitions between 3x83x - 8 and (3x8)-(3x - 8).

Would you like a detailed graph or further exploration of this function?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Absolute Value
Inequalities
Square Roots
Domain of a Function

Formulas

Square root function: \( \sqrt{y} \) is defined for \( y \geq 0 \)
Absolute value inequality: \( |u| \geq a \) splits into two cases: \( u \geq a \) or \( u \leq -a \)

Theorems

Properties of absolute values
Domain restrictions for square root functions

Suitable Grade Level

Grades 10-12