Math Problem Statement

Diberi p berubah secara langsung dengan punca kuasa dua q dan p =81 apabila q = 81. Hitung nilai q apabila p=27

Solution

Diberikan bahwa pp berubah secara langsung dengan punca kuasa dua qq, kita dapat menuliskan hubungan ini dalam bentuk persamaan:

p=kqp = k \sqrt{q}

Di mana kk adalah pemalar.

Langkah 1: Cari nilai kk dengan menggunakan p=81p = 81 dan q=81q = 81.

81=k8181 = k \sqrt{81} 81=k×981 = k \times 9 k=819=9k = \frac{81}{9} = 9

Langkah 2: Substitusikan nilai k=9k = 9 ke dalam persamaan untuk mencari qq apabila p=27p = 27.

p=kqp = k \sqrt{q} 27=9q27 = 9 \sqrt{q} q=279=3\sqrt{q} = \frac{27}{9} = 3 q=32=9q = 3^2 = 9

Jadi, nilai qq apabila p=27p = 27 adalah q=9q = 9.

Apakah Anda ingin penjelasan lebih lanjut atau memiliki pertanyaan lain?

Berikut adalah beberapa pertanyaan terkait untuk latihan lebih lanjut:

  1. Jika pp berubah secara langsung dengan q2q^2, bagaimana bentuk persamaan yang sesuai?
  2. Bagaimana caranya menentukan nilai pemalar kk dalam persamaan variasi langsung?
  3. Apakah perbedaan antara variasi langsung dan variasi terbalik?
  4. Jika p=64p = 64 dan q=16q = 16, berapa nilai pp untuk q=4q = 4?
  5. Bagaimana cara menggambarkan hubungan variasi langsung dalam grafik?

Tip: Dalam soal variasi langsung, nilai pemalar kk adalah kunci untuk menghitung nilai yang belum diketahui, jadi selalu temukan kk terlebih dahulu sebelum melanjutkan.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Direct Variation
Square Root
Algebra

Formulas

p = k√q

Theorems

Direct Proportionality Theorem

Suitable Grade Level

Grades 7-9