Math Problem Statement

Schlüsselaustauschverfahren nach Diffie und Hellman (DH) soll von zwei Benutzern (hier A und B) verwendet werden, um den Sitzungsschlüssel K zu vereinbaren. Hierzu besitzen die beiden Benutzer die Parameter α = 10 und p = 223 in authentischer Form. A benutzt den geheimen Schlüssel x_A = 11 und B benutzt den geheimen Schlüssel x_B = 13. A verschlüsselt die Nachricht mit c = E_K(m) = m * K MOD p. Das empfangene Chiffrat entschlüsselt B wie folgt: m = D_K(c) = c * K^{-1} MOD p, wobei K^{-1} das multiplikativ inverse Element zu K darstellt. Berechnen Sie die öffentlichen Schlüssel von A und B, das gemeinsame Geheimnis K und das Chiffrat der Nachricht m = 159.

Solution

The exercise involves a Diffie-Hellman key exchange with the following parameters:

Given:

  • α=10\alpha = 10
  • p=223p = 223
  • Secret keys:
    • xA=11x_A = 11 for user A
    • xB=13x_B = 13 for user B

Part (a) Steps:

  1. Compute the public keys for A and B:

    • Public key of A, yAy_A: yA=αxAmodpy_A = \alpha^{x_A} \mod p
    • Public key of B, yBy_B: yB=αxBmodpy_B = \alpha^{x_B} \mod p
  2. Calculate the shared secret KK:

    • The shared secret KK is calculated as: K=yBxAmodp=yAxBmodpK = y_B^{x_A} \mod p = y_A^{x_B} \mod p
  3. Calculate the ciphertext of the message m=159m = 159:

    • A encrypts the message mm using KK: c=EK(m)=mKmodpc = E_K(m) = m \cdot K \mod p

Calculations:

  1. Compute yAy_A: yA=1011mod223y_A = 10^{11} \mod 223

  2. Compute yBy_B: yB=1013mod223y_B = 10^{13} \mod 223

  3. Compute KK: K=yB11mod223=yA13mod223K = y_B^{11} \mod 223 = y_A^{13} \mod 223

  4. Encrypt m=159m = 159: c=159Kmod223c = 159 \cdot K \mod 223

Let me perform these calculations.The calculations are as follows:

  1. Public key of A (yAy_A): 6161
  2. Public key of B (yBy_B): 7979
  3. Shared secret KK: 204204
  4. Ciphertext cc for the message m=159m = 159: 101101

Would you like further details or have any questions?

Here are five related questions to expand on this topic:

  1. How is the multiplicative inverse K1K^{-1} used in the decryption process?
  2. Can you explain the importance of the prime pp in Diffie-Hellman key exchange?
  3. What are the security implications of choosing different values for α\alpha in Diffie-Hellman?
  4. How would you decrypt the ciphertext c=101c = 101 to retrieve the original message mm?
  5. Could we use a different key exchange protocol here, and how would it compare to Diffie-Hellman?

Tip: In Diffie-Hellman, selecting large prime values for pp and securely chosen private keys xAx_A and xBx_B enhances security against brute-force attacks.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic
Diffie-Hellman Key Exchange
Cryptography

Formulas

y_A = α^{x_A} mod p
y_B = α^{x_B} mod p
K = y_B^{x_A} mod p
c = m * K mod p

Theorems

Diffie-Hellman Key Exchange

Suitable Grade Level

Undergraduate