Math Problem Statement

Find dy/dx and simplify the result for each trigonometric function: 1. y = (1/2)x + (1/4)sin(2x) 2. y = sin(5x) - (1/3)sin^3(5x) 3. y = 3tan(2x) + tan^3(2x) 4. y = (-3/5)cot^5(x/3) + cot^3(x/3) - 3cot(x/3) - x

Solution

Let's go through each of these derivatives step-by-step. I'll find dydx\frac{dy}{dx} for each given function and simplify where possible.

Problem 1

y=12x+14sin2xy = \frac{1}{2}x + \frac{1}{4} \sin 2x

To find dydx\frac{dy}{dx}:

  1. The derivative of 12x\frac{1}{2}x with respect to xx is 12\frac{1}{2}.
  2. For 14sin2x\frac{1}{4} \sin 2x, use the chain rule:
    • The derivative of sin2x\sin 2x is 2cos2x2 \cos 2x.
    • Therefore, ddx(14sin2x)=142cos2x=12cos2x\frac{d}{dx} \left( \frac{1}{4} \sin 2x \right) = \frac{1}{4} \cdot 2 \cos 2x = \frac{1}{2} \cos 2x.

So, dydx=12+12cos2x.\frac{dy}{dx} = \frac{1}{2} + \frac{1}{2} \cos 2x.

Problem 2

y=sin5x13sin35xy = \sin 5x - \frac{1}{3} \sin^3 5x

To find dydx\frac{dy}{dx}:

  1. For sin5x\sin 5x, use the chain rule:
    • The derivative is 5cos5x5 \cos 5x.
  2. For 13sin35x\frac{1}{3} \sin^3 5x, use the chain rule and the power rule:
    • Rewrite as 13(sin5x)3\frac{1}{3} (\sin 5x)^3.
    • The derivative is 133(sin5x)25cos5x=5sin25xcos5x\frac{1}{3} \cdot 3 (\sin 5x)^2 \cdot 5 \cos 5x = 5 \sin^2 5x \cos 5x.

So, dydx=5cos5x5sin25xcos5x.\frac{dy}{dx} = 5 \cos 5x - 5 \sin^2 5x \cos 5x.

This can be simplified by factoring out 5cos5x5 \cos 5x: dydx=5cos5x(1sin25x).\frac{dy}{dx} = 5 \cos 5x (1 - \sin^2 5x).

Using the identity 1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta, we get: dydx=5cos5xcos25x=5cos35x.\frac{dy}{dx} = 5 \cos 5x \cdot \cos^2 5x = 5 \cos^3 5x.

Problem 3

y=3tan2x+tan32xy = 3 \tan 2x + \tan^3 2x

To find dydx\frac{dy}{dx}:

  1. For 3tan2x3 \tan 2x, use the chain rule:
    • The derivative of tan2x\tan 2x is 2sec22x2 \sec^2 2x.
    • So, ddx(3tan2x)=32sec22x=6sec22x\frac{d}{dx} (3 \tan 2x) = 3 \cdot 2 \sec^2 2x = 6 \sec^2 2x.
  2. For tan32x\tan^3 2x, use the chain rule and the power rule:
    • Rewrite as (tan2x)3(\tan 2x)^3.
    • The derivative is 3(tan2x)22sec22x=6tan22xsec22x3 (\tan 2x)^2 \cdot 2 \sec^2 2x = 6 \tan^2 2x \sec^2 2x.

So, dydx=6sec22x+6tan22xsec22x.\frac{dy}{dx} = 6 \sec^2 2x + 6 \tan^2 2x \sec^2 2x.

Problem 4

y=35cot5x3+cot3x33cotx3xy = -\frac{3}{5} \cot^5 \frac{x}{3} + \cot^3 \frac{x}{3} - 3 \cot \frac{x}{3} - x

To find dydx\frac{dy}{dx}:

  1. For 35cot5x3-\frac{3}{5} \cot^5 \frac{x}{3}, use the chain rule:
    • The derivative is 355cot4x3(13csc2x3)=33cot4x3csc2x3=cot4x3csc2x3-\frac{3}{5} \cdot 5 \cot^4 \frac{x}{3} \cdot \left( -\frac{1}{3} \csc^2 \frac{x}{3} \right) = \frac{3}{3} \cot^4 \frac{x}{3} \csc^2 \frac{x}{3} = \cot^4 \frac{x}{3} \csc^2 \frac{x}{3}.
  2. For cot3x3\cot^3 \frac{x}{3}, use the chain rule:
    • The derivative is 3cot2x3(13csc2x3)=cot2x3csc2x33 \cot^2 \frac{x}{3} \cdot \left( -\frac{1}{3} \csc^2 \frac{x}{3} \right) = -\cot^2 \frac{x}{3} \csc^2 \frac{x}{3}.
  3. For 3cotx3-3 \cot \frac{x}{3}, the derivative is 3(13csc2x3)=csc2x3-3 \cdot \left( -\frac{1}{3} \csc^2 \frac{x}{3} \right) = \csc^2 \frac{x}{3}.
  4. For x-x, the derivative is 1-1.

So, dydx=cot4x3csc2x3cot2x3csc2x3+csc2x31.\frac{dy}{dx} = \cot^4 \frac{x}{3} \csc^2 \frac{x}{3} - \cot^2 \frac{x}{3} \csc^2 \frac{x}{3} + \csc^2 \frac{x}{3} - 1.

Let me know if you need further details or explanations for any of these solutions!


Follow-up Questions

  1. How would you differentiate a composite trigonometric function like sinn(f(x))\sin^n(f(x))?
  2. What trigonometric identities might help in simplifying derivatives further?
  3. Could you apply a similar method to find higher-order derivatives for these functions?
  4. How does the chain rule differ from the product and quotient rules in derivatives?
  5. How can you apply these derivatives in real-world applications involving periodic motion?

Tip

When dealing with trigonometric functions raised to a power, always apply the chain rule carefully to avoid missing inner derivatives.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Trigonometric Derivatives
Chain Rule
Simplification

Formulas

dy/dx of sin(ax) = a cos(ax)
dy/dx of cos(ax) = -a sin(ax)
dy/dx of tan(ax) = a sec^2(ax)
dy/dx of cot(ax) = -a csc^2(ax)
Chain Rule: dy/dx of f(g(x)) = f'(g(x)) * g'(x)

Theorems

Chain Rule
Power Rule

Suitable Grade Level

Grades 11-12