Math Problem Statement

Differentiate the following functions: (a) y = x^2, (b) y = x^5, (c) y = x^{-1}, (d) y = x^{1/2}, (e) y = π, (f) y = 3x^4, (g) y = x^2 + 3, (h) y = x^5 - 6x^7, (i) y = (2x^2 - 3)/√x, (j) y = (x + 1)(x^2 + 3), (k) y = (3x^2 - 1)/x, (l) y = √x(x + 1).

Solution

Let's solve these differentiation problems one by one:

(a) y=x2y = x^2 dydx=2x\frac{dy}{dx} = 2x

(b) y=x5y = x^5 dydx=5x4\frac{dy}{dx} = 5x^4

(c) y=x1y = x^{-1} dydx=x2=1x2\frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2}

(d) y=x1/2y = x^{1/2} dydx=12x1/2=12x\frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}

(e) y=πy = \pi \frac{dy}{dx} = 0 \quad \text{(since \pi is a constant)}

(f) y=3x4y = 3x^4 dydx=34x3=12x3\frac{dy}{dx} = 3 \cdot 4x^3 = 12x^3

(g) y=x2+3y = x^2 + 3 dydx=2x+0=2x\frac{dy}{dx} = 2x + 0 = 2x

(h) y=x56x7y = x^5 - 6x^7 dydx=5x467x6=5x442x6\frac{dy}{dx} = 5x^4 - 6 \cdot 7x^6 = 5x^4 - 42x^6

(i) y=2x23xy = \frac{2x^2 - 3}{\sqrt{x}}

First, rewrite yy as: y=2x23x1/2=2x3/23x1/2y = \frac{2x^2 - 3}{x^{1/2}} = 2x^{3/2} - 3x^{-1/2} Now, differentiate: dydx=232x1/23(12)x3/2\frac{dy}{dx} = 2 \cdot \frac{3}{2}x^{1/2} - 3 \cdot \left(-\frac{1}{2}\right)x^{-3/2} dydx=3x1/2+32x3/2\frac{dy}{dx} = 3x^{1/2} + \frac{3}{2}x^{-3/2}

(j) y=(x+1)(x2+3)y = (x + 1)(x^2 + 3)

Use the product rule: dydx=(x+1)ddx(x2+3)+(x2+3)ddx(x+1)\frac{dy}{dx} = (x+1) \frac{d}{dx}(x^2+3) + (x^2+3) \frac{d}{dx}(x+1) =(x+1)(2x)+(x2+3)(1)= (x+1)(2x) + (x^2+3)(1) =2x(x+1)+(x2+3)=2x2+2x+x2+3= 2x(x+1) + (x^2 + 3) = 2x^2 + 2x + x^2 + 3 dydx=3x2+2x+3\frac{dy}{dx} = 3x^2 + 2x + 3

(k) y=3x21xy = \frac{3x^2 - 1}{x}

First, rewrite yy as: y=3x2x1x=3xx1y = \frac{3x^2}{x} - \frac{1}{x} = 3x - x^{-1} Now, differentiate: dydx=3+x2=3+1x2\frac{dy}{dx} = 3 + x^{-2} = 3 + \frac{1}{x^2}

(l) y=x(x+1)y = \sqrt{x(x+1)}

First, rewrite yy as: y=(x(x+1))1/2=(x2+x)1/2y = (x(x+1))^{1/2} = (x^2 + x)^{1/2} Now, apply the chain rule: dydx=12(x2+x)1/2(2x+1)\frac{dy}{dx} = \frac{1}{2}(x^2 + x)^{-1/2} \cdot (2x + 1) dydx=2x+12x2+x\frac{dy}{dx} = \frac{2x+1}{2\sqrt{x^2 + x}}

Would you like more details on any of these steps or have any questions?

Here are some related problems to consider:

  1. Differentiate y=x3y = x^3.
  2. Differentiate y=sin(x)y = \sin(x).
  3. Differentiate y=exy = e^x.
  4. Differentiate y=ln(x)y = \ln(x).
  5. Differentiate y=1x+2y = \frac{1}{x+2}.

Tip: Remember to always simplify functions before differentiating, if possible!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Exponents
Chain Rule
Product Rule
Quotient Rule

Formulas

d/dx[x^n] = nx^(n-1)
Chain Rule: d/dx[f(g(x))] = f'(g(x)) * g'(x)
Product Rule: d/dx[u*v] = u'v + uv'
Quotient Rule: d/dx[u/v] = (u'v - uv')/v^2

Theorems

Power Rule
Product Rule
Chain Rule

Suitable Grade Level

College-level Calculus