Math Problem Statement

diff using definition of derivatives (y+∆y and x+∆x) and using the shortcuts like chain rule to check. a) y=3x-√x b)y=(x²-2)² c)y=2-3x -1/x d)y=1/√x-2

Solution

To differentiate these functions, we'll use the definition of the derivative and then verify the results using shortcut rules (power, chain, and quotient rules). The definition of the derivative is:

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}


(a) y=3xxy = 3x - \sqrt{x}

Using the definition:

  1. Compute f(x+Δx)f(x+\Delta x):
    f(x+Δx)=3(x+Δx)x+Δxf(x+\Delta x) = 3(x+\Delta x) - \sqrt{x+\Delta x}
  2. Compute f(x+Δx)f(x)f(x+\Delta x) - f(x):
    [ \left[3(x+\Delta x) - \sqrt{x+\Delta x} \right] - \left[3x - \sqrt{x} \right] ] =3x+3Δxx+Δx3x+x= 3x + 3\Delta x - \sqrt{x+\Delta x} - 3x + \sqrt{x} =3Δx(x+Δxx)= 3\Delta x - (\sqrt{x+\Delta x} - \sqrt{x})
  3. Divide by Δx\Delta x and take the limit:
    f(x)=limΔx03Δx(x+Δxx)Δxf'(x) = \lim_{\Delta x \to 0} \frac{3\Delta x - (\sqrt{x+\Delta x} - \sqrt{x})}{\Delta x} Using the identity:
    ab=aba+b\sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}} x+Δxx=(x+Δx)xx+Δx+x=Δxx+Δx+x\sqrt{x+\Delta x} - \sqrt{x} = \frac{(x+\Delta x) - x}{\sqrt{x+\Delta x} + \sqrt{x}} = \frac{\Delta x}{\sqrt{x+\Delta x} + \sqrt{x}} Thus,
    f(x)=limΔx0[31x+Δx+x]f'(x) = \lim_{\Delta x \to 0} \left[ 3 - \frac{1}{\sqrt{x+\Delta x} + \sqrt{x}} \right] As Δx0\Delta x \to 0, x+Δxx\sqrt{x+\Delta x} \to \sqrt{x}, so: f(x)=312xf'(x) = 3 - \frac{1}{2\sqrt{x}}

Using shortcuts:

  • ddx(3x)=3\frac{d}{dx} (3x) = 3
  • ddx(x)=12x\frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}}

Thus,
f(x)=312xf'(x) = 3 - \frac{1}{2\sqrt{x}} ✔ Matches!


(b) y=(x22)2y = (x^2 - 2)^2

Using the definition (Omitted due to length; involves binomial expansion)

Using the chain rule

Let u=x22u = x^2 - 2, so y=u2y = u^2.

  • dydu=2u=2(x22)\frac{dy}{du} = 2u = 2(x^2 - 2)
  • dudx=2x\frac{du}{dx} = 2x
    By the chain rule:
    f(x)=2(x22)2x=4x(x22)f'(x) = 2(x^2 - 2) \cdot 2x = 4x(x^2 - 2)

(c) y=23x1xy = 2 - 3x - \frac{1}{x}

Using the definition (Omitted due to length)

Using shortcuts:

  • ddx(2)=0\frac{d}{dx} (2) = 0
  • ddx(3x)=3\frac{d}{dx} (-3x) = -3
  • ddx(x1)=x2=1x2\frac{d}{dx} (-x^{-1}) = x^{-2} = \frac{1}{x^2}

Thus,
f(x)=3+1x2f'(x) = -3 + \frac{1}{x^2}


(d) y=1x2y = \frac{1}{\sqrt{x}} - 2

Using the definition (Omitted due to length)

Using shortcuts:

Rewrite as y=x1/22y = x^{-1/2} - 2

  • ddx(x1/2)=12x3/2=12x3/2\frac{d}{dx} (x^{-1/2}) = -\frac{1}{2} x^{-3/2} = -\frac{1}{2x^{3/2}}
  • ddx(2)=0\frac{d}{dx} (-2) = 0

Thus,
f(x)=12x3/2f'(x) = -\frac{1}{2x^{3/2}}


Final Answers

  1. f(x)=312xf'(x) = 3 - \frac{1}{2\sqrt{x}}
  2. f(x)=4x(x22)f'(x) = 4x(x^2 - 2)
  3. f(x)=3+1x2f'(x) = -3 + \frac{1}{x^2}
  4. f(x)=12x3/2f'(x) = -\frac{1}{2x^{3/2}}

Do you want details on any step?


Related Questions

  1. How do you derive the power rule from the definition of the derivative?
  2. How do you use the product rule in differentiation?
  3. Can you explain the difference between the chain rule and the quotient rule?
  4. What are some real-world applications of derivatives?
  5. How do you find the second derivative using the chain rule?

Tip:

For square root functions, converting them to exponent form makes differentiation easier! 🚀

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definition of the derivative
Differentiation rules
Power rule
Chain rule
Quotient rule

Formulas

f'(x) = lim(∆x → 0) [(f(x+∆x) - f(x)) / ∆x]
d/dx(c) = 0 (constant rule)
d/dx(x^n) = n*x^(n-1) (power rule)
Chain rule: dy/dx = (dy/du) * (du/dx)
Quotient rule: d/dx(u/v) = (v*u' - u*v')/v^2

Theorems

Fundamental Theorem of Calculus (underlying derivative concept)

Suitable Grade Level

Grades 11-12