Math Problem Statement

differentiate

Differentiate y = (log(x))^cos(x^3 - 3x), log(x) > 0

Solution

We are tasked with differentiating the function:

y=(logx)cos(x33x),logx>0y = (\log{x})^{\cos{(x^3 - 3x)}}, \quad \log{x} > 0

To find dydx\frac{dy}{dx}, we will apply logarithmic differentiation. Here's the step-by-step process:

Step 1: Apply the natural logarithm to both sides

Taking the natural logarithm on both sides will simplify the exponentiation:

lny=ln((logx)cos(x33x))\ln{y} = \ln{\left((\log{x})^{\cos{(x^3 - 3x)}}\right)}

Using the logarithmic identity ln(ab)=blna\ln{(a^b)} = b \ln{a}, we get:

lny=cos(x33x)ln(logx)\ln{y} = \cos{(x^3 - 3x)} \cdot \ln{(\log{x})}

Step 2: Differentiate both sides with respect to xx

Now we differentiate implicitly with respect to xx. Start by differentiating the left-hand side:

1ydydx=ddx(cos(x33x)ln(logx))\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left( \cos{(x^3 - 3x)} \ln{(\log{x})} \right)

We will use the product rule on the right-hand side. Let’s denote:

  • u=cos(x33x)u = \cos{(x^3 - 3x)}
  • v=ln(logx)v = \ln{(\log{x})}

The product rule states that ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'.

Step 2.1: Differentiate u=cos(x33x)u = \cos{(x^3 - 3x)}

Using the chain rule:

u=sin(x33x)ddx(x33x)=sin(x33x)(3x23)u' = -\sin{(x^3 - 3x)} \cdot \frac{d}{dx}(x^3 - 3x) = -\sin{(x^3 - 3x)} \cdot (3x^2 - 3)

Step 2.2: Differentiate v=ln(logx)v = \ln{(\log{x})}

Using the chain rule again:

v=1logxddx(logx)=1logx1x=1xlogxv' = \frac{1}{\log{x}} \cdot \frac{d}{dx}(\log{x}) = \frac{1}{\log{x}} \cdot \frac{1}{x} = \frac{1}{x \log{x}}

Step 3: Combine using the product rule

Now, applying the product rule:

ddx(cos(x33x)ln(logx))=uv+uv\frac{d}{dx} \left( \cos{(x^3 - 3x)} \ln{(\log{x})} \right) = u'v + uv'

Substitute the values of u,u,v,u', u, v, and vv':

ddx(cos(x33x)ln(logx))=sin(x33x)(3x23)ln(logx)+cos(x33x)1xlogx\frac{d}{dx} \left( \cos{(x^3 - 3x)} \ln{(\log{x})} \right) = -\sin{(x^3 - 3x)}(3x^2 - 3) \ln{(\log{x})} + \cos{(x^3 - 3x)} \cdot \frac{1}{x \log{x}}

Step 4: Solve for dydx\frac{dy}{dx}

Now, we have:

1ydydx=sin(x33x)(3x23)ln(logx)+cos(x33x)1xlogx\frac{1}{y} \frac{dy}{dx} = -\sin{(x^3 - 3x)}(3x^2 - 3) \ln{(\log{x})} + \cos{(x^3 - 3x)} \cdot \frac{1}{x \log{x}}

Finally, multiply both sides by yy to isolate dydx\frac{dy}{dx}:

dydx=y[sin(x33x)(3x23)ln(logx)+cos(x33x)1xlogx]\frac{dy}{dx} = y \left[ -\sin{(x^3 - 3x)}(3x^2 - 3) \ln{(\log{x})} + \cos{(x^3 - 3x)} \cdot \frac{1}{x \log{x}} \right]

Since y=(logx)cos(x33x)y = (\log{x})^{\cos{(x^3 - 3x)}}, we substitute this back:

dydx=(logx)cos(x33x)[sin(x33x)(3x23)ln(logx)+cos(x33x)1xlogx]\frac{dy}{dx} = (\log{x})^{\cos{(x^3 - 3x)}} \left[ -\sin{(x^3 - 3x)}(3x^2 - 3) \ln{(\log{x})} + \cos{(x^3 - 3x)} \cdot \frac{1}{x \log{x}} \right]

This is the derivative of the given function.

Would you like further details on any step or have any questions?

Related Questions:

  1. How does logarithmic differentiation simplify exponentials?
  2. Why is the chain rule necessary in this differentiation?
  3. Can this function have critical points? If so, how can they be found?
  4. How does the product rule apply to differentiating more complex functions?
  5. How can we use the derivative to analyze the behavior of the function?

Tip:

When dealing with complex products or powers involving logarithms, logarithmic differentiation can be an efficient technique to simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Logarithmic Functions
Trigonometric Functions

Formulas

Product Rule: d(uv)/dx = u'v + uv'
Chain Rule: d(f(g(x)))/dx = f'(g(x)) * g'(x)
Logarithmic Differentiation

Theorems

Logarithmic differentiation simplifies functions with variable exponents
Chain rule for composite functions

Suitable Grade Level

Undergraduate Calculus