Math Problem Statement

Determine whether 2008 is quadratic residue and non residue mod 257. ( Use law of quadratic reciprocity)

Solution

To determine whether 20082008 is a quadratic residue modulo 257257, we can use properties of modular arithmetic and the Law of Quadratic Reciprocity. Here’s the process:

Step 1: Simplify the Problem Using Modular Reduction

Since we want to determine if 20082008 is a quadratic residue modulo 257257, we can reduce 20082008 modulo 257257: 2008mod257=2008257×7=20081799=2092008 \mod 257 = 2008 - 257 \times 7 = 2008 - 1799 = 209 Thus, the problem reduces to determining if 209209 is a quadratic residue modulo 257257.

Step 2: Apply the Legendre Symbol

The Legendre symbol (209257)\left( \frac{209}{257} \right) will tell us if 209209 is a quadratic residue modulo 257257. Specifically:

  • If (209257)=1\left( \frac{209}{257} \right) = 1, then 209209 (and thus 20082008) is a quadratic residue mod 257257.
  • If (209257)=1\left( \frac{209}{257} \right) = -1, then 209209 (and thus 20082008) is a non-residue mod 257257.

Step 3: Use Quadratic Reciprocity

Since both 209209 and 257257 are odd primes, we can use the Law of Quadratic Reciprocity: (209257)=(257209)×(1)2091225712\left( \frac{209}{257} \right) = \left( \frac{257}{209} \right) \times (-1)^{\frac{209 - 1}{2} \cdot \frac{257 - 1}{2}} Calculating 20912=104\frac{209 - 1}{2} = 104 and 25712=128\frac{257 - 1}{2} = 128, both of which are even, the exponent 104128104 \cdot 128 is even, so: (1)104128=1(-1)^{104 \cdot 128} = 1 Thus: (209257)=(257209)\left( \frac{209}{257} \right) = \left( \frac{257}{209} \right)

Step 4: Simplify 257209\frac{257}{209} Using Modular Reduction

Now, reduce 257257 modulo 209209: 257mod209=257209=48257 \mod 209 = 257 - 209 = 48 So we have reduced the expression to (48209)\left( \frac{48}{209} \right).

Step 5: Further Reduce (48209)\left( \frac{48}{209} \right)

Since 48=16348 = 16 \cdot 3, we can split this using the property of the Legendre symbol: (48209)=(16209)(3209)\left( \frac{48}{209} \right) = \left( \frac{16}{209} \right) \cdot \left( \frac{3}{209} \right) Now:

  1. 1616 is a perfect square (16=4216 = 4^2), so (16209)=1\left( \frac{16}{209} \right) = 1.
  2. We need to evaluate (3209)\left( \frac{3}{209} \right).

Step 6: Apply Quadratic Reciprocity Again for (3209)\left( \frac{3}{209} \right)

Since both 33 and 209209 are odd primes, we use reciprocity: (3209)=(2093)×(1)31220912\left( \frac{3}{209} \right) = \left( \frac{209}{3} \right) \times (-1)^{\frac{3 - 1}{2} \cdot \frac{209 - 1}{2}} Calculating the exponent 1104=1041 \cdot 104 = 104, which is even, we get: (1)104=1(-1)^{104} = 1 Thus: (3209)=(2093)\left( \frac{3}{209} \right) = \left( \frac{209}{3} \right) Reducing 209209 modulo 33: 209mod3=2209 \mod 3 = 2 So (2093)=(23)=1\left( \frac{209}{3} \right) = \left( \frac{2}{3} \right) = -1.

Conclusion

Since (209257)=1\left( \frac{209}{257} \right) = -1, 209209 (and therefore 20082008) is a quadratic non-residue modulo 257257.

Would you like more details on any step?

Here are some questions to expand on this problem:

  1. What is the Law of Quadratic Reciprocity?
  2. How do Legendre symbols help determine quadratic residues?
  3. What are the properties of modular reduction?
  4. Can quadratic reciprocity be used for composite numbers?
  5. What is the significance of the exponent parity in quadratic reciprocity?

Tip: Always reduce large numbers modulo your target number early to simplify computations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic
Quadratic Residues
Quadratic Reciprocity
Legendre Symbol

Formulas

Legendre Symbol: (a/p) = ±1
Law of Quadratic Reciprocity: (p/q)(q/p) = (-1)^{((p-1)/2)((q-1)/2)} for odd primes p and q
Modular Reduction: a ≡ b (mod n)

Theorems

Law of Quadratic Reciprocity
Properties of Legendre Symbols

Suitable Grade Level

Undergraduate Level