Math Problem Statement
do a step by step process on how you find the missing answers
Solution
Let's go through this step-by-step, using each clue provided to deduce the six numbers.
Information Given
- The lowest number is 37.
- The range is 24.
- This means the difference between the largest and smallest numbers is 24.
- Therefore, the largest number is .
- The mode is 43.
- This means 43 is the most frequent number, so it must appear more than once.
- The median is 46.
- With six numbers, the median is the average of the third and fourth numbers when sorted in ascending order.
- This suggests that the third and fourth numbers average to 46, so they could both be 46.
- One number is a multiple of 11.
- Multiples of 11 near the given range (37 to 61) include 44 and 55. One of these must be in the list.
Step-by-Step Solution
-
List Known Numbers:
- We know the smallest number is 37.
- The largest number is 61.
-
Assign 43 as the Mode:
- Since 43 is the mode, it must appear more than once. Let’s assume there are two occurrences of 43 for now.
-
Median Requirement:
- The median is 46, which suggests the third and fourth numbers in ascending order are 46. So, we can assign two positions with the value 46.
-
Possible Numbers So Far:
- From the information we’ve assumed, the six numbers could look something like this (in ascending order):
- We still need one more number, which must be a multiple of 11. The two possible multiples of 11 are 44 and 55.
-
Inserting a Multiple of 11:
- If we use 44 as the fifth number, we would get the following sorted set:
- This arrangement satisfies all conditions:
- Lowest number is 37.
- Range is .
- Mode is 43 (since 43 appears twice).
- Median is 46 (average of the third and fourth numbers, 44 and 46).
- One number is a multiple of 11 (44).
Conclusion
The six numbers are:
Let me know if you'd like further clarification on any of these steps!
Would you like to explore any of these follow-up questions?
- Why can’t 55 be the multiple of 11 in this case?
- What would happen if there was only one occurrence of 43?
- How would changing the median affect the solution?
- Can the mode be a number other than 43?
- How does the range help narrow down possible answers?
Tip: Always arrange numbers in ascending order to make identifying the median and range easier.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Statistics
Range
Mode
Median
Multiples
Formulas
Range = Highest number - Lowest number
Median = Average of middle numbers in an ordered list of even size
Theorems
-
Suitable Grade Level
Grades 6-8
Related Recommendation
Solve for Missing Numbers with Given Range, Mode, Median, and Multiple of 11
Solve a List Problem with Mode 9, Median 13, and Range 11
Median, Mean, Range, and Mode Problem with a Set of Numbers from 0-9
Find 6 Numbers with Mean 4, Median 4, and Mode 3
Mean, Median, Mode, and Range Calculations for Various Data Sets