Math Problem Statement

Diberi bahawa matriks D = [[5, 3], [6, 4]] dan E = [[2, -3], [m, n]] serta DE = [[1, 0], [0, 1]]. Cari nilai m dan n.

Solution

Let's solve this problem step by step. The matrices given are:

D=(5364),E=(23mn),D = \begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}, \quad E = \begin{pmatrix} 2 & -3 \\ m & n \end{pmatrix}, and the product DEDE is given as:

DE=(1001).DE = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.

This product represents the identity matrix II, so EE must be the inverse of DD. Let's calculate mm and nn step by step.


Step 1: Compute the determinant of DD

The determinant of DD is: det(D)=(5)(4)(6)(3)=2018=2.\text{det}(D) = (5)(4) - (6)(3) = 20 - 18 = 2.


Step 2: Find the inverse of DD

The inverse of a 2×22 \times 2 matrix D=(abcd)D = \begin{pmatrix} a & b \\ c & d \end{pmatrix} is: D1=1det(D)(dbca).D^{-1} = \frac{1}{\text{det}(D)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. Substitute the values of a=5,b=3,c=6,a = 5, b = 3, c = 6, and d=4d = 4:

= \begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}.$$ So, $$E = D^{-1}$$, and we can compare it directly to $$E = \begin{pmatrix} 2 & -3 \\ m & n \end{pmatrix}$$. --- ### Step 3: Equate elements of $$E$$ From the matrices: $$E = \begin{pmatrix} 2 & -3 \\ m & n \end{pmatrix}, \quad D^{-1} = \begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}.$$ Equating the corresponding elements: - $$m = -3$$, - $$n = \frac{5}{2}$$. Thus: $$m = -3, \quad n = \frac{5}{2}.$$ --- Let me know if you'd like further clarification! ### Related Questions: 1. How is the determinant of a $$2 \times 2$$ matrix calculated? 2. What are the properties of the identity matrix $$I$$? 3. Can every square matrix be inverted? Why or why not? 4. How do we check if two matrices are inverses of each other? 5. How do matrix inverses apply in solving systems of linear equations? ### Tip: To verify your results, always multiply the original matrix by its calculated inverse. If the result is the identity matrix, your inverse is correct!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix multiplication
Matrix inverses
Determinants
Identity matrix

Formulas

Matrix multiplication: (AB)_{ij} = sum_k (A_{ik} * B_{kj})
Inverse of a 2x2 matrix: D^{-1} = (1/det(D)) * [[d, -b], [-c, a]]
Determinant of a 2x2 matrix: det(D) = ad - bc

Theorems

Properties of the identity matrix
Invertible matrix theorem

Suitable Grade Level

Grades 10-12