Math Problem Statement

Gegeven: de tweedegraadsfunctie f met voorschrift f(x) = x^2 - (m + 2)x + 2m. Bepaal de waarde van m zodanig dat de top van de parabool y = f(x) op de x-as ligt.

Solution

The problem involves finding the value of mm such that the vertex (top) of the parabola y=f(x)y = f(x) lies on the xx-axis. The given function is:

f(x)=x2(m+2)x+2mf(x) = x^2 - (m+2)x + 2m

Step-by-step solution:

1. Vertex formula:

The vertex of a parabola ax2+bx+cax^2 + bx + c has an xx-coordinate given by: xv=b2ax_v = -\frac{b}{2a}

Here, a=1a = 1, b=(m+2)b = -(m+2), and c=2mc = 2m. Substituting b=(m+2)b = -(m+2): xv=(m+2)21=m+22x_v = -\frac{-(m+2)}{2 \cdot 1} = \frac{m+2}{2}

2. Substitute xvx_v into f(x)f(x) to find yvy_v:

The yy-coordinate of the vertex is obtained by substituting xvx_v back into the equation for f(x)f(x). We want yv=0y_v = 0 (the vertex lies on the xx-axis). Substituting x=m+22x = \frac{m+2}{2} into f(x)f(x): f(m+22)=(m+22)2(m+2)(m+22)+2mf\left(\frac{m+2}{2}\right) = \left(\frac{m+2}{2}\right)^2 - (m+2)\left(\frac{m+2}{2}\right) + 2m

3. Simplify f(xv)=0f(x_v) = 0:

Expanding f(m+22)f\left(\frac{m+2}{2}\right): f(m+22)=(m+2)24(m+2)22+2mf\left(\frac{m+2}{2}\right) = \frac{(m+2)^2}{4} - \frac{(m+2)^2}{2} + 2m

Combine terms with a common denominator: f(m+22)=(m+2)242(m+2)24+2mf\left(\frac{m+2}{2}\right) = \frac{(m+2)^2}{4} - \frac{2(m+2)^2}{4} + 2m f(m+22)=(m+2)22(m+2)24+2mf\left(\frac{m+2}{2}\right) = \frac{(m+2)^2 - 2(m+2)^2}{4} + 2m f(m+22)=(m+2)24+2mf\left(\frac{m+2}{2}\right) = \frac{- (m+2)^2}{4} + 2m

Set f(xv)=0f(x_v) = 0: (m+2)24+2m=0\frac{-(m+2)^2}{4} + 2m = 0

4. Solve for mm:

Multiply through by 4 to eliminate the fraction: (m+2)2+8m=0-(m+2)^2 + 8m = 0 (m2+4m+4)+8m=0-(m^2 + 4m + 4) + 8m = 0 m24m4+8m=0-m^2 - 4m - 4 + 8m = 0 m2+4m4=0-m^2 + 4m - 4 = 0

Multiply through by 1-1: m24m+4=0m^2 - 4m + 4 = 0

Factorize the quadratic: (m2)2=0(m-2)^2 = 0

So: m=2m = 2

Final Answer:

The value of mm is: m=2\boxed{m = 2}

Let me know if you would like further clarification or a breakdown of specific steps.


Related Questions:

  1. What is the general condition for a parabola's vertex to lie on the xx-axis?
  2. How does the coefficient of x2x^2 affect the parabola's shape?
  3. Can mm take any other values to satisfy this problem?
  4. What happens if m=2m = -2 in this function?
  5. How can we confirm the vertex coordinate algebraically?

Tip:

When solving quadratic equations, always check for opportunities to factorize before resorting to the quadratic formula for efficiency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Vertex of a Parabola

Formulas

x_v = -b / (2a) (vertex formula for the x-coordinate)
f(x) = ax^2 + bx + c (general quadratic equation)
Condition: y_v = 0 for the vertex to lie on the x-axis

Theorems

Vertex formula for a quadratic function

Suitable Grade Level

Grades 9-12