Math Problem Statement
Are the vectors \left[\begin{array}{c} -2\cr 1\cr -5\cr 0 \end{array}\right], \left[\begin{array}{c} 3\cr 4\cr 0\cr -4 \end{array}\right], \left[\begin{array}{c} -4\cr 3\cr 2\cr 2 \end{array}\right] and \left[\begin{array}{c} -1\cr -4\cr 5\cr 4 \end{array}\right] linearly independent?
Choose
If they are linearly dependent, find scalars that are not all zero such that the equation below is true. If they are linearly independent, find the only scalars that will make the equation below true.
\left[\begin{array}{c} -2\cr 1\cr -5\cr 0 \end{array}\right] + \left[\begin{array}{c} 3\cr 4\cr 0\cr -4 \end{array}\right] + \left[\begin{array}{c} -4\cr 3\cr 2\cr 2 \end{array}\right] + \left[\begin{array}{c} -1\cr -4\cr 5\cr 4 \end{array}\right] = \left[\begin{array}{c} 0\cr 0\cr 0\cr 0 \end{array}\right].
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Vector Spaces
Linear Independence
Formulas
c_1 \begin{bmatrix} -2 \\ 1 \\ -5 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 4 \\ 0 \\ -4 \end{bmatrix} + c_3 \begin{bmatrix} -4 \\ 3 \\ 2 \\ 2 \end{bmatrix} + c_4 \begin{bmatrix} -1 \\ -4 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
Theorems
Linear Dependence and Independence
Gaussian Elimination
Suitable Grade Level
Undergraduate
Related Recommendation
Determine Linear Independence of Vectors Using Gaussian Elimination
Linear Independence of Vectors in 4D Space: [2, -1, 3, 2], [1, 3, 4, 2], [3, -5, 2, 2]
Find Linearly Dependent Vectors in R4 with Span Conditions
Finding Four Vectors in R^4: Conditions of Linear Dependence and Span
Are Vectors [-2 4], [7 -2], and [3 -6] Linearly Independent?