Math Problem Statement

Are the vectors \left[\begin{array}{c} -2\cr 1\cr -5\cr 0 \end{array}\right], \left[\begin{array}{c} 3\cr 4\cr 0\cr -4 \end{array}\right], \left[\begin{array}{c} -4\cr 3\cr 2\cr 2 \end{array}\right] and \left[\begin{array}{c} -1\cr -4\cr 5\cr 4 \end{array}\right] linearly independent?

Choose

If they are linearly dependent, find scalars that are not all zero such that the equation below is true. If they are linearly independent, find the only scalars that will make the equation below true.

\left[\begin{array}{c} -2\cr 1\cr -5\cr 0 \end{array}\right] + \left[\begin{array}{c} 3\cr 4\cr 0\cr -4 \end{array}\right] + \left[\begin{array}{c} -4\cr 3\cr 2\cr 2 \end{array}\right] + \left[\begin{array}{c} -1\cr -4\cr 5\cr 4 \end{array}\right] = \left[\begin{array}{c} 0\cr 0\cr 0\cr 0 \end{array}\right].

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Spaces
Linear Independence

Formulas

c_1 \begin{bmatrix} -2 \\ 1 \\ -5 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 4 \\ 0 \\ -4 \end{bmatrix} + c_3 \begin{bmatrix} -4 \\ 3 \\ 2 \\ 2 \end{bmatrix} + c_4 \begin{bmatrix} -1 \\ -4 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}

Theorems

Linear Dependence and Independence
Gaussian Elimination

Suitable Grade Level

Undergraduate